

Об утверждении Санитарных правил "Санитарно-эпидемиологические требования к обеспечению радиационной безопасности"

Утративший силу

Постановление Правительства Республики Казахстан от 3 февраля 2012 года № 202. Утратило силу постановлением Правительства Республики Казахстан от 8 сентября 2015 года № 754

Сноска. Утратило силу постановлением Правительства РК от 08.09.2015 № 754 (вводится в действие со дня его первого официального опубликования).

Примечание РЦПИ.

В соответствии с Законом РК от 29.09.2014 г. № 239-V ЗРК по вопросам разграничения полномочий между уровнями государственного управления см. приказ и.о. Министра национальной экономики Республики Казахстан от 27 марта 2015 года № 261

В соответствии с подпунктом 2) статьи 6 Кодекса Республики Казахстан от 18 сентября 2009 года «О здоровье народа и системе здравоохранения» Правительство Республики Казахстан ПОСТАНОВЛЯЕТ:

- 1. Утвердить прилагаемые Санитарные правила «Санитарно-эпидемиологические требования к обеспечению радиационной безопасности».
- 2. Настоящее постановление вводится в действие по истечении десяти календарных дней после первого официального опубликования.

Премьер - Министр

Республики Казахстан

К. Масимов

Утверждены

постановлением Правительства

Республики Казахстан

от 3 февраля 2012 года № 202

Санитарные правила

«Санитарно-эпидемиологические требования к обеспечению радиационной безопасности»

1. Общие положения

1. Настоящие Санитарные правила (далее – Санитарные правила) устанавливают санитарно-эпидемиологические требования к обеспечению радиационной безопасности при проектировании, вводе в эксплуатацию и содержании радиационных объектов, выводе из эксплуатации радиационных объектов, обращении с источниками ионизирующего излучения (закрытыми и открытыми радионуклидными источниками, радиоактивными веществами, радиоизотопными приборами, устройствами, генерирующими ионизирующее излучение), обращении с радиоактивными отходами, применении материалов и изделий, загрязненных или содержащих радионуклиды, осуществлении производственного радиационного контроля на объектах, в том числе нефтегазового комплекса и металлолома, применении средств индивидуальной защиты и личной гигиены, при медицинском облучении, воздействии природных источников излучения И радиационных

Первый руководитель организации обеспечивает соблюдение требовании настоящих Санитарных правил.

- 2. В настоящих Санитарных правилах использованы следующие понятия:
- 1) активность (далее A) мера радиоактивности какого-либо количества радионуклида, находящегося в данном энергетическом состоянии в данный момент времени:

$$A = \frac{dN}{dt}$$

- dN ожидаемое число спонтанных ядерных превращений из данного энергетического состояния, происходящих за промежуток времени dt. Единицей активности является Беккерель (далее bk). Использовавшаяся ранее внесистемная единица активности кюри (далее bk) составляет bk0 bk1.
- 2) активность минимально значимая (далее M3A) активность открытого или закрытого источника ионизирующего излучения при превышении которой требуется санитарно-эпидемиологическое заключение, выдаваемое органами госсанэпиднадзора. Единица измерения M3A беккерель (Бк);
- 3) активность минимально значимая удельная (далее МЗУА) удельная активность открытого источника ионизирующего излучения в помещении, при превышении которого требуется санитарно-эпидемиологическое заключение, выдаваемое органами госсанэпиднадзора.

Для закрытых источников излучения решение о необходимости получения разрешения на обращение определяется путем сравнения его активности с МЗА, без учета МЗУА. Единица измерения МЗУА беккерель на грамм Бк/г;

4) удельная (объемная) активность – отношение активности А радионуклида в веществе к массе m (объему V) вещества:

$$A_{m} = \frac{A}{m}; \quad A_{r} = \frac{A}{V}$$

Единица удельной активности — Беккерель на килограмм (далее — Бк/кr). Единица объемной активности — Беккерель на кубический метр (далее — Бк/м^3):

- 5) активность эквивалентная равновесная объемная (далее ЭРОА) дочерних продуктов изотопов радона 222 Rn и 220 Rn взвешенная сумма объемных активностей короткоживущих дочерних продуктов изотопов радона 218 Po (RaA); 214 Pb (RaB); 214 Bi (RaC); 212 Pb(ThB); 212 Bi (ThC) соответственно: (ЭРОА) Rn = 0,10 A_{RaA} + 0,52 A_{RaB} + 0,38 A_{RaC} (ЭРОА) Tn = 0,91 A_{ThB} + 0,09 A_{ThC} ,
 - А_і объемные активности дочерних продуктов изотопов радона;
- 6) радиоактивное вещество вещество в любом агрегатном состоянии, содержащее радионуклиды с активностью, соответствующее гигиеническим нормативам «Санитарно—эпидемиологические требования к обеспечению радиационной безопасности (далее ГН) и настоящих санитарных правил;
- 7) вмешательство действие, направленное на снижение вероятности облучения, либо дозы или неблагоприятных последствий облучения;
- 8) группа критическая группа лиц из населения (не менее десяти человек), однородная по одному или нескольким признакам (полу, возрасту, социальным или профессиональным условиям, месту проживания, рациону питания), которая подвергается наибольшему радиационному воздействию от источника излучения;
- 9) дезактивация удаление или снижение радиоактивного загрязнения с какой-либо поверхности или из какой-либо среды;
- 10) доза поглощенная (далее D) величина энергии ионизирующего излучения, переданная веществу:

$$D = \frac{d\bar{e}}{dm}$$
, где:

de – средняя энергия, переданная ионизирующим излучением веществу, находящемуся в элементарном объеме, а dm – масса вещества в этом объеме.

Энергия может быть усреднена по любому определенному объему, и в этом случае средняя доза будет равна полной энергии, переданной объему, деленной на массу этого объема. В единицах Международной системы единиц поглощенная доза измеряется в джоулях, деленных на килограмм (Дж/кг), и имеет специальное название – грей (далее – Гр). Использовавшаяся ранее внесистемная единица рад равна 0,01 Гр;

11) доза в органе или ткани (далее – DT) – средняя поглощенная доза в определенном органе или ткани человеческого тела:

$$\mathbf{D}_{\mathtt{T}} = \frac{1}{\mathbf{m}_{\mathtt{T}}} \int_{\mathtt{m}_{\mathtt{T}}} \mathbf{D} \times \mathbf{dm}$$
 , где:

m_т – масса органа или ткани, а D – поглощенная доза в элементе массы dm;

12) доза эквивалентная (далее – $H_{T,R}$) - поглощенная доза в органе или ткани, умноженная на соответствующий взвешивающий коэффициент для данного вида излучения, W_R:

$$H_{\scriptscriptstyle T,\mathbb{R}} = W_{\scriptscriptstyle \mathbb{R}} \times D_{\scriptscriptstyle T,\mathbb{R}}$$
 , где:

 ${\bf D}_{T,R}$ – средняя поглощенная доза в органе или ткани T, а ${\bf W}_R$ взвешивающий R. коэффициент излучения ДЛЯ

При воздействии различных видов излучения с различными взвешивающими коэффициентами, которые приведены в таблице 1 приложения 1 к настоящим санитарным правилам эквивалентная, доза определяется как сумма эквивалентных доз для этих видов излучения:

$$H_{_T} = \sum_{_{R}} H_{_{T,R}}$$
 , где:

Единицей эквивалентной дозы является зиверт (далее – Зв);

13) доза эффективная (далее – Е) – величина, используемая, как мера риска возникновения отдаленных последствий облучения всего тела человека и отдельных его органов и тканей, с учетом их радиочувствительности. Она представляет сумму произведений эквивалентной дозы в органах и тканях на соответствующие взвешивающие коэффициенты, которые приведены в таблице 2 приложения 1 к настоящим санитарным правилам:

$$E = \sum_{T} W_{T} \times H_{T}$$
, где:

 $\boldsymbol{H}_{_{T}}$ – эквивалентная доза в органе или ткани T, а $\boldsymbol{W}_{_{T}}$ – взвешивающий органа или эффективной дозы – Τ. коэффициент органа ДЛЯ ткани Единица зиверт

14) доза эквивалентная (далее – $H_{_{\rm T}}(\tau)$) или эффективная (E(τ)) ожидаемая при внутреннем облучении – доза за время т, прошедшее после поступления радиоактивных веществ в организм:

$$\mathbf{H}_{\mathtt{T}}(\tau) = \int_{t_{0}}^{t_{0}+\tau} \mathbf{H}_{\mathtt{T}}(t) dt,$$
 $\mathbf{E}(\tau) = \sum_{\mathtt{T}} \mathbf{W}_{\mathtt{T}} \times \mathbf{H}_{\mathtt{T}}(\tau)$

Τ. времени t В органе ИЛИ ткани Когда тне определено, то его следует принять равным 50 годам для взрослых 7 0 лет для детей; И 15) доза эффективная (эквивалентная) годовая – сумма эффективной (эквивалентной) дозы внешнего облучения, полученной за календарный год, и ожидаемой эффективной (эквивалентной) дозы внутреннего облучения, обусловленной поступлением в организм радионуклидов за этот же год; 16) доза эффективная коллективная – мера коллективного риска возникновения стохастических эффектов облучения, она равна сумме индивидуальных эффективных доз. Единица эффективной коллективной дозы человеко-зиверт (далее чел. Зв); 17) доза предотвращаемая – прогнозируемая доза вследствие радиационной которая аварии, предотвращается защитными мероприятиями; 18) загрязнение радиоактивное – присутствие радиоактивных веществ на поверхности, внутри материала, в воздухе, в теле человека или в другом месте, в количестве, превышающем уровни, установленные требованиями ГН и настоящих санитарных правил; 19) загрязнение поверхности не снимаемое (фиксированное) – радиоактивные вещества, которые не переносятся при контакте на другие предметы и не удаляются при дезактивации; 20) загрязнение поверхности снимаемое (нефиксированное) – радиоактивные вещества, которые переносятся при контакте на другие предметы и удаляются при дезактивации; 21) захоронение отходов радиоактивных – безопасное размещение радиоактивных отходов без намерения последующего их извлечения; 22) зона наблюдения – территория за пределами санитарно–защитной зоны, на которой проводится радиационный контроль; 23) зона радиационной аварии – территория, на которой установлен факт радиационной аварии; 24) источник ионизирующего излучения (далее – ИИИ или источник излучения) – радиоактивное вещество или устройство, испускающее или способное испускать ионизирующее излучение, соответствующее требованиям ГН, настоящих санитарных правил и других нормативных правовых актов Республики Казахстан; 25) источник излучения закрытый – это источник излучения, устройство которого исключает поступление содержащихся в нем радионуклидов в

окружающую среду в условиях применения и износа, на которые он рассчитан;

 $t_{_{\Omega}}$ – момент поступления, а $H_{_{\rm T}}(t)$ – мощность эквивалентной дозы к моменту

- 26) источник излучения открытый источник излучения, при использовании которого возможно поступление содержащихся в нем радионуклидов в окружающую среду;
- 27) источник излучения природный источник ионизирующего излучения природного происхождения, соответствующий требованиям ГН и настоящих с а н и т а р н ы х п р а в и л ;
- 28) источник излучения техногенный это источник ионизирующего излучения специально созданный для его полезного применения или являющийся побочным продуктом этой деятельности;
- 29) категория объекта радиационного характеристика объекта по степени его потенциальной опасности для населения в условиях возможной аварии;
- 30) квота часть предела дозы, установленная для ограничения облучения населения от конкретного техногенного источника излучения и пути облучения (внешнее, поступление с водой, пищей и воздухом);
- 31) класс работ характеристика работ с открытыми источниками ионизирующего излучения по степени потенциальной опасности для персонала, определяющая требования по радиационной безопасности в зависимости от радиотоксичности и активности нуклидов;
- 32) контроль радиационный получение информации о радиационной обстановке в организации, в окружающей среде и об уровнях облучения людей (включает в себя дозиметрический и радиометрический контроль);
- 33) место рабочее место постоянного или временного пребывания персонала для выполнения производственных функций в условиях воздействия ионизирующего излучения в течение более половины рабочего времени или двух ч а с о в н е п р е р ы в н о ;
- 34) мощность дозы доза излучения за единицу времени (секунду, минуту, ч а с) ;
- 35) население все лица, включая персонал вне работы с источниками и о н и з и р у ю щ е г о и з л у ч е н и я ;
 - 36) облучение воздействие на человека ионизирующего излучения;
 - 37) облучение аварийное облучение в результате радиационной аварии;
- 38) облучение медицинское облучение пациентов в результате медицинского обследования или лечения;
- 39) облучение планируемое повышенное планируемое облучение персонала в дозах, превышающих установленные основные пределы доз, с целью предупреждения развития радиационной аварии или ограничения ее последствий;
- 40) облучение потенциальное облучение, которое может возникнуть в результате радиационной аварии;

- 41) облучение природное облучение, которое обусловлено природными и с т о ч н и к а м и и з л у ч е н и я ;
- 42) облучение производственное облучение работников от всех техногенных и природных источников ионизирующего излучения в процессе производственной деятельности;
- 43) облучение профессиональное облучение персонала в процессе его работы с техногенными источниками ионизирующего излучения;
- 44) облучение техногенное облучение от техногенных источников как в нормальных, так и в аварийных условиях, за исключением медицинского облучения пациентов;
- 45) обращение с отходами радиоактивными все виды деятельности, связанные со сбором, транспортированием, переработкой, хранением и (или) захоронением радиоактивных отходов
- 46) обращение с источниками ионизирующего излучения деятельность, связанная с изготовлением, поставкой, получением, обладанием, хранением, использованием, передачей, переработкой или захоронением, импортом, экспортом, транспортированием, техническим обслуживанием источников и о н и з и р у ю щего излучения;
- 47) объект радиационный организация, где осуществляется обращение с техногенными ИИИ;
- 48) отходы радиоактивные не предназначенные для дальнейшего использования вещества в любом агрегатном состоянии, в которых содержание радионуклидов превышает уровни, установленные требованиями ГН и настоящих санитарных правил;
- 49) персонал лица, работающие с техногенными источниками излучения (группа A) или находящиеся по условиям работы в сфере их воздействия (группа Б) ;
- 50) предел дозы (далее ПД) величина годовой эффективной или эквивалентной дозы техногенного облучения, которая не должна превышаться в условиях нормальной работы. Соблюдение предела годовой дозы предотвращает возникновение детерминированных эффектов, а вероятность стохастических эффектов сохраняется при этом на приемлемом уровне;
- 51) предел годового поступления (далее ПГП) допустимый уровень поступления данного радионуклида в организм в течение года, который при монофакторном воздействии приводит к облучению условного человека ожидаемой дозой, равной соответствующему пределу годовой дозы;
- 52) радиационная авария потеря управления источником ионизирующего излучения, вызванная неисправностью оборудования, неправильными действиями работников (персонала), стихийными бедствиями или иными

причинами, которые могли привести или привели к облучению людей выше установленных норм или радиоактивному загрязнению окружающей среды;

- 53) радиационная безопасность населения состояние защищенности настоящего и будущего поколений людей от вредного для их здоровья воздействия ионизирующего излучения. Обеспечение радиационной безопасности осуществление комплекса организационных, технологических, технических, санитарно-эпидемиологических и медико—профилактических мероприятий, направленных на снижение уровней облучения персонала и н а с е л е н и я ;
- 54) радиационно-гигиеническое паспорт организации документ, характеризующий состояние радиационной безопасности в организации и содержащий рекомендации по ее улучшению;
- 55) радиационно-гигиеническое паспорт территории документ, характеризующий состояние радиационной безопасности населения территории и содержащий рекомендации по ее улучшению;
- 56) работа с ИИИ все виды обращения с источником излучения на рабочем месте, включая радиационный контроль;
- 57) работа с радиоактивными веществами любые виды обращения с радиоактивными веществами на рабочем месте, включая радиационный контроль ;
- 58) риск вероятность возникновения у человека или его потомства какого—либо вредного последствия в результате облучения;
- 59) санитарный пропускник комплекс помещений, предназначенных для смены одежды, обуви, санитарной обработки персонала, контроля радиоактивного загрязнения кожных покровов, средств индивидуальной защиты, специальной и личной одежды персонала;
- 60) санитарный шлюз помещение между зонами радиационного объекта, предназначенное для предварительной дезактивации и смены дополнительных средств индивидуальной защиты;
- 61) средство индивидуальной защиты средство защиты персонала от внешнего облучения, поступления радиоактивных веществ внутрь организма и радиоактивного загрязнения кожных покровов;
- 62) уровень вмешательства (далее УВ) величина предотвращаемой дозы, при достижении которой, в случаях возникновения ситуаций хронического или аварийного облучения, принимаются защитные или послеаварийные меры;
- 63) уровень контрольный значение контролируемой величины дозы, мощности дозы, радиоактивного загрязнения, устанавливаемое для оперативного радиационного контроля, с целью закрепления достигнутого уровня радиационной безопасности, обеспечения дальнейшего снижения облучения

персонала и населения, радиоактивного загрязнения окружающей среды;

- 64) устройство (источник), генерирующее ионизирующее излучение электрофизическое устройство (например, рентгеновский аппарат, ускоритель, генератор), в котором ионизирующее излучение возникает за счет изменения скорости заряженных частиц, их аннигиляции или ядерных реакций;
- 65) эффекты излучения детерминированные клинически выявляемые вредные биологические эффекты, вызванные ионизирующим излучением, в отношении которых предполагается существование порога, ниже которого эффект отсутствует, а выше тяжесть эффекта зависит от дозы
- 66) эффекты излучения стохастические вредные биологические эффекты, вызванные ионизирующим излучением, не имеющие дозового порога возникновения, вероятность возникновения которых пропорциональна дозе и для которых тяжесть проявления не зависит от дозы;
- 67) природные радионуклиды радиоактивные элементы рядов урана -238 и т о р и я 2 3 2 ;
- 68) производственные отходы объектов нефтегазового комплекса солевые отложения и шлам, извлеченные из технологического оборудования при его ремонте и очистке, элементы технологического оборудования и конструкций, не предназначенные для дальнейшего использования по их назначению, почва и грунты на территории предприятий, в которых могут накапливаться природные радионуклиды в процессе производственной деятельности предприятий нефтегазового комплекса солевые
- 69) металлолом (лом цветных и черных металлов) это отходы производства и потребления, содержащие цветные или черные металлы, образовавшиеся из пришедших в негодность или утративших потребительские свойства изделий промышленного и бытового назначения и годные только для переработки;
- 70) партия металлолома отдельно складированное количество металлолома (количество металлолома, загруженные в одну или несколько транспортных единиц платформа, вагон, автомашины, грузовой контейнер);
- 71) локальный источник предмет, имеющий радиоактивное загрязнение, создающий мощность эквивалентной дозы (далее МЭД) гамма–излучения на расстоянии 10 сантиметров (далее см) выше 0,2 микрозиверта в час (далее мкЗв/ч), либо имеющий МЭД, превышающую естественный радиационный фон местности, либо имеющий на поверхности плотность потока бета–частиц, превышающую 0,4 Бк/см² и (или) 0,04 Бк/см² альфа–частиц;
- 72) радиоактивное загрязнение металлолома отдельный фрагмент металлолома, содержащий или загрязненный радионуклидами превышающими значения, установленные гигиеническими нормативами радиационной

- 3. Источники излучения подлежат обязательному учету и контролю. От радиационного контроля и учета полностью освобождаются:
- 1) электрофизические устройства, генерирующие ионизирующее излучение с максимальной энергией не более 5 кэВ;
- 2) другие электрофизические устройства, генерирующие ионизирующее излучение, в условиях нормальной эксплуатации которых мощность эквивалентной дозы в любой доступной точке на расстоянии 0,1 м от поверхности аппаратуры не превышает 1,0 мкЗв/ч;
- 3) продукция, товары, содержащие радионуклиды, на которые имеется санитарно-эпидемиологическое заключение о том, что создаваемые ими дозы облучения не превышают значения, приведенные в ГН;
- 4) открытые и закрытые источники с активностью ниже МЗА, приведенной в д е й с т в у ю щ и х Γ H ;
- 5) закрытые гамма-излучающие радиоактивные источники, мощность дозы от которых на расстоянии 0,1 м не превышает 1,0 мк3в/ч;
- 6) от радиационного контроля и учета источники излучения полностью освобождаются на основании санитарно-эпидемиологического заключения государственного органа в сфере санитарно-эпидемиологического благополучия населения на соответствующей территории.
 - 4. Разрешение на работу с источниками излучения не требуется, если:
- 1) используются продукция, товары, перечисленные в пункте 3 настоящих с а н и т а р н ы х п р а в и л ;
- 2) на рабочем месте удельная активность радионуклида меньше МЗУА, или активность радионуклида в открытом источнике меньше МЗА, приведенных в ГН, или сумма отношений активности отдельных радионуклидов к их табличным з н а ч е н и я м м е н ь ш е 1;
- 3) в организации общая активность радионуклидов в открытом виде не превышает МЗА более чем в десять раз или сумма отношений активности нескольких радионуклидов к их табличным значениям приведенным в ГН, не превышает единицу;
- 4) мощность эквивалентной дозы в любой точке, находящейся на расстоянии 0,1 метра от поверхности закрытого радионуклидного источника излучения, не превышает 1,0 мк3в/ч над фоном.

2. Санитарно-эпидемиологические требования к обеспечению радиационной безопасности

5. Радиационная безопасность персонала, населения и окружающей природной среды обеспечивается при соблюдении основных принципов радиационной безопасности: обоснование, оптимизация, нормирование.

Принцип обоснования применяется на стадии принятия решения уполномоченными органами при проектировании новых источников излучения и радиационных объектов, выдаче лицензий, разработке и утверждении правил и гигиенических нормативов по радиационной безопасности, а также при изменении условий их эксплуатации согласно приложению 2 к настоящим с а н и т а р н ы м правилам.

В условиях радиационной аварии принцип обоснования относится не к источникам излучения и условиям облучения, а к защитному мероприятию. В качестве величины пользы следует оценивать предотвращенную данным мероприятием дозу. Мероприятия, направленные на восстановление контроля над источниками излучения, проводятся в обязательном порядке.

Принцип оптимизации предусматривает поддержание на возможно низком и достижимом уровне как индивидуальных (ниже пределов, установленных ГН), так и коллективных доз облучения, с учетом социальных и экономических факторов в соответствии с приложением 2 к настоящим санитарным правилам.

В условиях радиационной аварии, когда вместо пределов доз действуют более высокие уровни вмешательства, принцип оптимизации применяется к защитному мероприятию с учетом предотвращаемой дозы облучения и ущерба, с в я з а н н о г о с в м е ш а т е л ь с т в о м .

Принцип нормирования обеспечивается всеми лицами, от которых зависит уровень облучения людей и предусматривает не превышение установленных Законом Республики Казахстан от 23 апреля 1998 года № 219-І «О радиационной безопасности населения» и ГН индивидуальных пределов доз облучения граждан о т в с е х И И И И .

Для контроля за эффективными и эквивалентными дозами облучения, регламентированными ГН, вводятся допустимые уровни монофакторного воздействия (для одного радионуклида в зависимости от пути поступления или одного вида внешнего облучения), являющиеся производными от основных пределов доз: мощности дозы, годового поступления радионуклидов в организм и других показателей.

Производные нормативы при техногенном облучении рассчитаны для монофакторного воздействия и каждый из них исчерпывает весь предел дозы, их использование основывается на условии не превышения единицы суммой отношений всех контролируемых величин к их допустимым значениям.

Для предупреждения использования установленного для населения предела дозы только на один техногенный источник излучения или на ограниченное их

количество применяются квоты на основные техногенные источники облучения.

Обоснование значений квот должно содержаться в проектах радиационных объектов. Рекомендации по установлению квот приведены в приложении 3 к настоящим санитарным правилам.

- 6. Оценка радиационной безопасности на объекте и в каждом регионе о с у щ е с т в л я е т с я н а о с н о в е
 - 1) характеристики радиоактивного загрязнения окружающей среды;
- 2) анализа обеспечения мероприятий по радиационной безопасности и выполнения норм, правил и гигиенических нормативов в области радиационной безопасности;
- 3) вероятности радиационных аварий и их масштабе; 4) степени готовности к эффективной ликвидации радиационных аварий и их последствий;
- 5) анализа доз облучения персонала группы «А» по результатам регламентированных форм № 1 ДОЗ, № 2 ДОЗ, а также получаемых отдельными группами населения от всех ИИИ;
- 6) числа лиц, подвергшихся облучению выше установленных пределов доз облучен и я.
- 7. Радиационная безопасность на объекте и вокруг него обеспечивается за с ч е т :
- 1) качества проекта радиационного объекта; 2) обоснованного выбора района и площадки для размещения радиационного объе к т а ;
 - 3) физической защиты источников излучения; 4) зонирования территории вокруг наиболее опасных объектов и внутри них;
 - 5) условий эксплуатации технологических систем;
 - 6) лицензирования всех видов деятельности с источниками излучения;
- 7) санитарно-эпидемиологической оценки деятельности с источниками о б л у ч е н и я ;
 - 8) наличия системы производственного радиационного контроля;
- 9) планирования и проведения мероприятий по обеспечению радиационной безопасности персонала и населения при нормальной работе объекта, его реконструкции и выводе из эксплуатации, а так же при радиационных авариях;
- 10) повышения квалификации и знания правил работы с источниками и з л у ч е н и я .
 - 8. Эксплуатирующая организация обеспечивает:
- 1) получение санитарно-эпидемиологического заключения на право работ с источниками излучения и на выпускаемую продукцию, содержащую радиоактивные вещества или оборудование, работающее на основе источников

- 2) разработку контрольных уровней радиационных факторов в организации и зоне наблюдения с целью закрепления достигнутого уровня радиационной безопасности, а также инструкций по радиационной безопасности;
 - 3) утверждение перечня лиц, относящихся к персоналу групп А и Б;
- 4) создание условий работы с источниками ионизирующего излучения, соответствующих требованиям настоящих санитарных правил, правил по охране труда, технике безопасности, промышленной безопасности и других санитарных правил, действие которых распространяется на данную организацию;
- 5) планирование и осуществление мероприятий по обеспечению и совершенствованию радиационной безопасности в организации;
- 6) систематический контроль радиационной обстановки на рабочих местах, в помещениях, на территории организации, в контролируемых зонах, а также за предельно допустимыми выбросами и предельно допустимыми сбросами радиоактивных веществ в окружающую среду;
- 7) проведение регулярного контроля и учета индивидуальных доз облучения персонала с предоставлением обобщенной информации в государственный орган в сфере санитарно-эпидемиологического благополучия населения на соответствующей территории;
- 8) регулярное информирование персонала об уровнях ионизирующего излучения на их рабочих местах и о величине полученных ими индивидуальных д о з о б л у ч е н и я ;
- 9) подготовку и аттестацию по вопросам обеспечения радиационной безопасности руководителей и исполнителей работ, специалистов служб радиационной безопасности, других лиц, постоянно или временно выполняющих работы с источниками излучения;
- 10) проведение инструктажа и проверку знаний персонала в области радиационной безопасности;
- 11) проведение предварительных (при поступлении на работу) и периодических медицинских осмотров персонала;
- 12) своевременное информирование государственных органов, уполномоченных осуществлять государственное управление, государственный надзор и контроль в области обеспечения радиационной безопасности, о возникновении аварийной ситуации, о нарушениях технологического регламента, создающих угрозу радиационной безопасности;
- 13) выполнение заключений, постановлений и предписаний должностных лиц государственных органов, осуществляющих государственное управление, государственный надзор и контроль в области обеспечения радиационной безопасности;

- 14) получение специального разрешения (лицензии) на деятельность в области использования атомной энергии;
- 15) ведение учета радиоактивных источников (радиоактивных веществ), радиоизотопных приборов и установок, генерирующих ионизирующее излучение, исключающего возможность их утраты или бесконтрольного использования и х р а н е н и я .
 - 9. Персонал, работающий с источниками излучения (группа А):
- 1) выполняет требования по обеспечению радиационной безопасности, установленные настоящими санитарными правилами;
 - 2) использует средства индивидуальной защиты;
- 3) выполняет установленные требования по предупреждению радиационной аварии и правила поведения в случае ее возникновения;
 - 4) своевременно проходит периодические медицинские осмотры;
- 5) незамедлительно ставит в известность руководителя (цеха, участка, лаборатории) и службу радиационной безопасности (лицо, ответственное за радиационную безопасность) обо всех обнаруженных неисправностях в работе установок, приборов и аппаратов, являющихся источниками излучения;
- 6) выполняет указания службы радиационной безопасности, касающиеся обеспечения радиационной безопасности при выполнении работ;
- 7) по окончании смены покидает свои рабочие места, если не предусмотрено иное производственной необходимостью.
 - 10. Радиационная безопасность персонала обеспечивается:
- 1) ограничениями допуска к работе с источниками излучения по возрасту, полу, состоянию здоровья, уровню предыдущего облучения и другим показателям;
 - 2) знанием и соблюдением правил работы с источниками излучения;
- 3) достаточностью защитных барьеров, экранов и расстояния от источников излучения, а также ограничением времени работы с источниками излучения;
- 4) созданием условий труда, отвечающих требованиям ГН и настоящих санитарных правил;
 - 5) применением индивидуальных средств защиты;
- 6) соблюдением контрольных уровней радиационных факторов в организации;
 - 7) организацией радиационного контроля;
 - 8) организацией системы информации о радиационной обстановке;
- 9) проведением эффективных мероприятий по защите персонала при планировании повышенного облучения в случае угрозы и возникновении аварии;
 - 10) организацией учета и контроля источников ионизирующего излучения.
 - 11. Радиационная безопасность населения обеспечивается:

- 1) созданием условий жизнедеятельности людей, в соответствии с требованиями настоящих санитарных правил;
 - 2) установлением квот на облучение от разных источников излучения; 3) организацией радиационного контроля;
- 4) эффективностью планирования и проведения мероприятий по радиационной защите в нормальных условиях и в случае радиационной аварии;
 - 5) организацией системы информации о радиационной обстановке.
- 12. При разработке мероприятий по снижению доз облучения персонала и населения исходят из следующих основных положений:
- 1) индивидуальные дозы снижаются там, где они превышают допустимый уровень облучения;
- 2) мероприятия по коллективной защите людей осуществляются в отношении источников излучения, где возможно достичь наибольшего снижения коллективной дозы облучения при минимальных затратах;
- 3) снижение доз от каждого источника излучения достигается за счет уменьшения облучения критических групп для этого источника излучения.
- 13. Применение радиоактивных веществ в различных областях хозяйства путем их введения в вырабатываемую продукцию (независимо от физического состояния продукции) допускается на основании санитарно-эпидемиологического заключения.

3. Санитарно-эпидемиологические требования к проектированию радиационных объектов

- 14. При выборе земельного участка для строительства радиационного объекта учитывают категорию объекта, его потенциальную радиационную, химическую и пожарную опасность для населения и окружающей среды. На земельный участок должно быть санитарно—эпидемиологическое заключение на соответствие требованиям настоящих санитарных правил.
- 15. Категория радиационных объектов устанавливается на стадии их проектирования на основании санитарно-эпидемиологического заключения.

По потенциальной радиационной опасности устанавливается четыре категории объектов:

- 1) к I категории относятся радиационные объекты, при аварии на которых возможно их радиационное воздействие на население и потребоваться меры по е г о з а щ и т е ;
- 2) ко II категории относятся объекты, при аварии на которых радиационное воздействие ограничивается территорией санитарно—защитной зоны:
 - 3) к III категории относятся объекты, радиационное воздействие которых

- 4) к IV категории относятся объекты, радиационное воздействие от которых ограничивается помещениями, где проводятся работы с источниками излучения.
- 16. При выборе места размещения радиационных объектов I и II категорий оцениваются метеорологические, гидрологические, геологические и сейсмические факторы при нормальной эксплуатации и при возможных авариях.
- 17. При выборе площадки для строительства радиационных объектов I и II категорий следует отдавать предпочтение участкам:
 - 1) расположенным на малонаселенных незатопляемых территориях;
 - 2) имеющим устойчивый ветровой режим;
- 3) ограничивающим возможность распространения радиоактивных веществ за пределы промышленной площадки объекта, благодаря своим топографическим и гидрогеологическим условиям.
- 18. Радиационные объекты I и II категории должны располагаться с учетом розы ветров преимущественно с подветренной стороны по отношению к жилой территории, лечебно-профилактическим и детским организациям, а также к местам отдыха и спортивным сооружениям.
- 19. Генеральный план радиационного объекта разрабатывается с учетом развития производства, прогноза радиационной обстановки на объекте и вокруг него и риска возникновения радиационных аварий.
- 20. Размещение радиационного объекта допускается в соответствии с санитарно-эпидемиологическим заключением.
- 21. Не допускается размещение объекта, осуществляющего работы с источниками излучения, в жилом и общественном здании, кроме рентгеновских установок, применяемых в стоматологической практике, размещение которых допускается на основании санитарно-эпидемиологического заключения.
- 22. Вокруг радиационных объектов I-II категорий устанавливается санитарно-защитная зона, а вокруг радиационных объектов I категории также и зона наблюдения. Санитарно-защитная зона для радиационных объектов III категории ограничивается территорией объекта, для радиационных объектов IV категории зонирование не предусмотрено.

В отдельных случаях на основании санитарно-эпидемиологического заключения, санитарно-защитная зона радиационных объектов I-II категорий ограничевается пределами территории объекта.

23. Размеры санитарно-защитной зоны и зоны наблюдения вокруг радиационного объекта устанавливаются с учетом уровней внешнего облучения, а также величин и площадей возможного распространения радиоактивных выбросов и сбросов.

санитарно-защитная зона и зона наблюдения устанавливаются с учетом суммарного воздействия объектов.

Внутренняя граница зоны наблюдения должна совпадать с внешней границей с а н и т а р н о - з а щ и т н о й з о н ы .

Категория потенциальной радиационной опасности и безопасность радиационного объекта обосновывается в проекте ядерной, радиационной и электрофизической установок (далее – ЯРЭУ). Установленная категория согласовывается с уполномоченным органом в сфере использования атомной энергии и органом в сфере санитарно-эпидемиологического благополучия населения. Для действующих ЯРЭУ категория потенциальной опасности определяется эксплуатирующей организацией установки для сценария максимальной радиационной аварии и согласовывается с уполномоченным государственным органом в сфере использования атомной энергии и органом в сфере санитарно-эпидемиологического благополучия населения, согласно таблицы приложения 3 К настоящим санитарным правилам.

- 24. Радиационное воздействие на население, проживающее в зоне наблюдения радиационного объекта I категории, при нормальной его эксплуатации должно быть ограничено размером квоты для данного объекта.
- 25. Размеры санитарно—защитной зоны (полосы отчуждения) вдоль трассы трубопровода для удаления жидких радиоактивных отходов устанавливаются в зависимости от активности последних, рельефа местности, характера грунтов, глубины заложения трубопровода, уровня напора в ней и должны быть не менее 20 метров в каждую сторону от трубопровода.
- 26. Санитарно-защитные зоны и зоны наблюдения вокруг судов и иных плавающих средств с ядерными установками устанавливаются в местах их ввода в эксплуатацию, в портах стоянки и в местах снятия с эксплуатации.
- 27. Границы санитарно-защитной зоны и зоны наблюдения радиационного объекта устанавливаются на стадии проектирования.
- 28. В санитарно-защитной зоне радиационных объектов не допускается постоянное или временное проживание, размещение детских организаций, больниц, санаториев и других оздоровительных организаций, а также промышленных и подсобных сооружений, не относящихся к этому объекту. Территория санитарно-защитной зоны должна быть благоустроена и озеленена.
- 29. В зоне наблюдения и в санитарно—защитной зоне по результатам санитарно-эпидемиологической экспертизы могут вводиться ограничения на хозяйственную деятельность.

Использование земель санитарно—защитной зоны для сельскохозяйственных целей допускается на основании санитарно-эпидемиологического заключения. В этом случае вся вырабатываемая продукция подлежит

санитарно-эпидемиологической экспертизе и радиационному контролю.

- 30. В зоне наблюдения на случай аварийного выброса радиоактивных веществ, администрацией объекта предусматривается комплекс защитных мероприятий в соответствии с требованиями ГН и настоящих санитарных правил
- 31. В санитарно-защитной зоне и зоне наблюдения силами службы радиационной безопасности объекта проводится радиационный контроль.
- 32. При проектировании радиационных объектов обеспечивается меры безопасности при конструировании, строительстве, реконструкции, эксплуатации, выводе из эксплуатации, а также в случае аварии. Разработка этой документации допускается при наличии лицензии на предоставление услуг в области использования атомной энергии.
- 33. В проекте радиационного объекта для каждого помещения (участка, территории) указывается:
- 1) при работе с открытыми источниками излучения: радионуклид, соединение, агрегатное состояние, активность на рабочем месте, годовое потребление, вид и характер планируемых работ, класс работ;
- 2) при работе с закрытыми источниками излучения: радионуклид, его вид, активность, допустимое количество источников на рабочем месте и их суммарная активность, характер планируемых работ;
- 3) при работе с устройствами, генерирующими ионизирующее излучение: тип устройства, вид, энергия и интенсивность генерируемого излучения и (или) анодное напряжение, сила тока, мощность, максимально допустимое число одновременно работающих устройств, размещенных в одном помещении (на у частке, территории);
- 4) при работе ядерного реактора, генератора радионуклидов, с радиоактивными отходами и другими источниками излучения со сложной радиационной характеристикой: вид источника излучения и его радиационные характеристики (радионуклидный состав, активность, энергия и интенсивность излучения). Для всех работ указываются их характер и ограничительные условия
- 34. Проектирование защиты от внешнего облучения персонала и населения проводят с учетом коэффициента запаса по годовой эффективной дозе равным двум и наличия других источников излучения и перспективное увеличение их м о щ н о с т и .
- 35. Проектирование защиты от внешнего ионизирующего излучения должно выполняться с учетом назначения помещений, категорий облучаемых лиц и длительности облучения:
 - 1) при расчете защиты с коэффициентом запаса, равным двум, проектная

мощность эквивалентной дозы излучения (далее — H) на поверхности защиты определяется по формуле $H = 500 \times \mathcal{I}/t$, мк3e/v

- Д предел дозы для персонала или населения, мЗв в год; t - продолжительность облучения, часов в год;
- 2) значения проектной мощности эквивалентной дозы для стандартной продолжительности пребывания в помещениях и на территориях персонала и населения с коэффициентом запаса 2 приведены в таблице 1 приложения 4 к настоящим санитарным правилам;
- 3) для рентгеновских аппаратов и ускорителей расчет ведется с учетом радиационного выхода и рабочей нагрузки аппарата по методикам, утвержденным в установленном порядке.
- 36. Расчет допустимых выбросов и сбросов радиационных объектов должен проводиться исходя из требования, чтобы эффективная доза для населения за 70 лет жизни, обусловленная годовым выбросом и сбросом, не превышала установленного значения квоты предела дозы.
- 37. При проектировании радиационных объектов и выборе технологических с х е м р а б о т о б е с п е ч и в а ю т :
 - 1) минимальное облучение персонала;
- 2) максимальную автоматизацию и механизацию операций; 3) автоматизированный и визуальный контроль за ходом технологического процесса;
 - 4) применение наименее токсичных и вредных веществ; 5) минимальные уровни шума, вибрации и других вредных факторов;
 - 6) минимальные выбросы и сбросы радиоактивных веществ;
- 7) минимальное количество радиоактивных отходов с простыми, надежными способами их временного хранения и переработки;
- 8) звуковую и/или световую сигнализацию о нарушениях технологического п p о ц e с c a ;
 - 9) блокировки.
- 38. Технологическое оборудование для работ с радиоактивными веществами соответствует следующим требованиям:
- 1) конструкция должна быть надежной и удобной в эксплуатации, обладать необходимой герметичностью, обеспечивать возможность применения дистанционных методов управления и контроля за ходом работы оборудования;
- 2) изготавливаться из коррозионно-стойких и радиационно-стойких материалов, поддающихся дезактивации;
- 3) наружные и внутренние поверхности оборудования должны быть доступными для проведения дезактивации.

39. В проекте радиационного объекта предусматривается комплекс организационных, технических и санитарно-эпидемиологических мероприятий по обеспечению радиационной безопасности персонала и населения при проведении ремонтных работ.

4. Санитарно-эпидемиологические требования к вводу в эксплуатацию, содержанию радиационных объектов и обеспечение безопасности персонала

- 40. Радиационный объект принимается при наличии санитарно-эпидемиологического заключения.
- 41. Получение, хранение источников излучения и проведение с ними работ разрешается при наличии лицензии и санитарно—эпидемиологического заключения на право работ с источниками ионизирующего излучения, которое заполняется согласно приложению 5 к настоящим санитарным правилам и инструкции по заполнению санитарно эпидемиологического заключения на право работ с источниками ионизирующих излучений согласно приложению 6 к настоящим санитарным правилам и выдаваемое органами государственного санитарно-эпидемиологического надзора по запросу организации. Основанием для выдачи санитарно-эпидемиологического заключения является акт приемки в эксплуатацию построенного (реконструированного) объекта или акт санитарного обследования действующего объекта.

Санитарно-эпидемиологическое заключение на право работ с ИИИ выдается на срок до 2-х лет. В случае изменения условий работы с ИИИ (видов, характеристик ИИИ, вида и характера работы) соответствующие изменения указываются в акте обследования или выдается новое заключение по запросу о р г а н и з а ц и й.

- 42. Работа с источниками излучения допускается только в помещениях, указанных в санитарно-эпидемиологическом заключении. На дверях каждого помещения указывают его назначение, класс проводимых работ с открытыми источниками излучения и знак радиационной опасности.
- 43. Оборудование, контейнеры, упаковки, аппараты, передвижные установки, транспортные средства, содержащие источники излучения, должны иметь знак р а д и а ц и о н н о й о п а с н о с т и .
- 44. Допускается не наносить знак радиационной опасности на оборудование в помещении, где постоянно проводятся работы с источниками излучения и которое имеет знак радиационной опасности.
- 45. Обеспечение условия сохранности источников излучения в организации осуществляет ее администрация.

- 46. Вывоз источника излучения, для проведения работ с ним, вне организации допускается при наличии санитарно-эпидемиологического заключения государственного органа в сфере санитарно-эпидемиологического благополучия населения на соответствующей территории.
- 47. Обращение с источниками излучения в различных областях промышленности, науки, медицины, образования, сельского хозяйства, торговли допускается только при наличии санитарно-эпидемиологического заключения.

В случае изменения конструкции источника излучения или изделия, содержащего такой источник, получают новое санитарно-эпидемиологическое з а к л ю ч е н и е .

- 48. К моменту начала работ с источниками излучения на предприятии разрабатывают систему радиационного контроля, включающую в себя организацию и проведение контроля за радиационной обстановкой в помещениях, в которых ведутся работы с источниками излучения.
- 49. В зависимости от объема и характера работ с источниками излучения на предприятии организуют службу радиационной безопасности или назначают лицо, ответственное за радиационный контроль.
- 50. Положение о службе радиационной безопасности (лице, ответственном за радиационный контроль) утверждается главным инженером (руководителем) предприятия по согласованию с государственным органом в сфере санитарно—эпидемиологического благополучия населения на соответствующей территории и определяет численность, права и обязанности службы (лица, ответственного за радиационный контроль).

Численность службы устанавливается таким образом, чтобы обеспечить радиационной контроль при всех радиационно-опасных работах.

- 51. Персонал службы радиационной безопасности и лицо, ответственное за радиационный контроль, назначаются приказом (распоряжением) администрации предприятия из числа сотрудников, прошедших специальную подготовку.
- 52. Отнесение персонала к той или другой категории облучаемых лиц определяет администрация предприятия по согласованию с государственным органом в сфере санитарно—эпидемиологического благополучия населения на соответствующей территории, с учетом достигнутого уровня защиты и доз о блучения персонала.
- 53. Требования к персоналу, допускаемому к работам с источниками излучения, определяются характером производственного процесса, типом применяемого оборудования и настоящими санитарными правилами.
- 54. Лица, допускаемые к работам и постоянно работающие с источниками излучения, перед поступлением на работу и в дальнейшем, периодически (1 раз в год), должны проходить медицинские осмотры.

55. К самостоятельной работе, связанной с воздействием излучения, допускаются лица не моложе 18 лет, имеющие соответствующую выполняемой работе квалификацию, обученные безопасным методом и приемам ведения работ, прошедшие инструктаж по охране труда.

Повторный (очередной) инструктаж проводится не реже 1 раза в три месяца. Проведение инструктажа регистрируется в журнале инструктажа.

При изменении характера работ с источниками излучения проводится внеочередной инструктаж. Лица, временно привлекаемые к работам с источниками излучения, также должны быть проинструктированы перед началом р а б о т ы .

В инструкции по технике безопасности и производственной санитарии, распространяющиеся на работы с источниками излучения, должны быть внесены требования радиационной безопасности и порядок проведения дозиметрического к о н т р о л я .

На работы, проводимые с источниками излучения при снятой стационарной защите или без таковой (наладка, регулировка, экспериментальные исследования), должны быть разработаны и согласованы с государственным органом в сфере санитарно—эпидемиологического благополучия населения на соответствующей территории специальные инструкции по радиационной безопасности.

При изменении условий работ в инструкции вносят необходимые изменения.

- 56. При прекращении работ с источниками излучения администрация организации информирует об этом территориальные органы в сфере санитарно-эпидемиологического благополучия населения на соответствующей территории тории.
- 57. При проведении работ с источниками излучения не допускается выполнение операций, не предусмотренных инструкциями по эксплуатации и радиационной безопасности, если эти действия не направлены на принятие экстренных мер по предотвращению аварий и других обстоятельств, угрожающих здоровью работающих.
- 58. Технические условия на защитное технологическое оборудование (камеры, боксы, вытяжные шкафы), а также сейфы, контейнеры для радиоактивных отходов, транспортные средства, транспортные упаковочные комплекты, контейнеры, предназначенные для хранения и перевозки радиоактивных веществ, фильтры системы пыле-, газоочистки, средства индивидуальной защиты должны иметь санитарно-эпидемиологическое з а к л ю ч е н и е .
- 59. Выпуск приборов, аппаратов, установок и других изделий, действие которых основано на использовании ионизирующего излучения, радионуклидных источников излучения, приборов, аппаратов и установок, при

работе которых генерируется ионизирующее излучение, а также эталонных источников излучения допускается только по технической документации, составленной в соответствии с требованиями действующих стандартов и на основании санитарно-эпидемиологического заключения

Выпуск опытных образцов ИИИ в количестве свыше трех штук и их серийное производство разрешается после получения санитарно—эпидемиологического з а к л ю ч е н и я .

При выпуске ИИИ в количестве до трех штук техническая документация подлежит экспертизе в государственном органе в сфере санитарно-эпидемиологического благополучия населения на соответствующей территории.

Изменения, вносимые в ранее утвержденную техническую документацию на ИИИ, подлежат санитарно-эпидемиологической экспертизе.

Для получения санитарно—эпидемиологического заключения на выпуск ИИИ в государственный орган в сфере санитарно-эпидемиологического благополучия населения Республики Казахстан направляются технические условия, техническое описание и инструкция по эксплуатации.

- 60. Поставка организациям источников излучения и изделий, содержащих их, проводится по заказ—заявкам по форме согласно приложению 7 к настоящим санитарным правилам. Заказы—заявки подписываются государственным органом в сфере санитарно-эпидемиологического благополучия населения на соответствующей территории после оценки готовности объекта с оформлением акта санитарно—эпидемиологического обследования. Поставка источников излучения, предназначенных для градуировки и поверки дозиметрической и радиометрической аппаратуры, а также радиоиммунных препаратов проводится без специальных разрешений, если их характеристики соответствуют требованиям пункта 4 настоящих санитарных правил.
- 61. Передача из одной организации в другую источников излучения и изделий с характеристиками, превышающими значения, указанные в пункте 4 настоящих санитарных правил, допускается на основании санитарно-эпидемиологического заключения по месту нахождения как передающей, так и принимающей источники излучения организации и с обязательной информацией лицензирующего органа.

При передаче источников излучения на временное хранение или использование составляется акт приема—передачи. Копии паспортов (сертификатов и т.д.) на источники излучения передаются лицу ответственному за учет и хранение принимающей организации.

В случае если организация–владелец источников излучения, переданных на временное хранение, периодически использует их для производственных нужд (

например, проведение каротажных работ и т.д.), получение источников излучения производится только на основании письменной заявки. Выдача и возврат источников излучения регистрируются в приходно-расходном журнале.

После завершения работ по временному использованию (хранению) источники излучения и копии паспортов (сертификатов и т.д.) на них по акту возвращаются организации-владельцу.

- 62. Согласование и регистрация заказов—заявок на получение, передачу источников излучения и изделий, их содержащих, разрешается только для организаций, имеющих лицензию на вид деятельности, указанный в санитарно-эпидемиологическом заключении на право работ с источниками и о н и з и р у ю щ е г о и з л у ч е н и я.
- 63. Организация, получившая источники излучения, извещает об этом государственный орган в сфере санитарно—эпидемиологического благополучия на соответствующей территории в десятидневный срок
- 64. Эксплуатирующая организация обеспечивает сохранность источников излучения и должна обеспечить такие условия получения, хранения, использования и списания с учета всех источников излучения, при которых исключается возможность их утраты или бесконтрольного использования.
- 65. Лицо, назначенное ответственным за учет и хранение источников излучения, осуществляет регулирование их приема и передачи по установленным формам, указанным в приложениях 8, 9 к настоящим санитарным правилам.

Лицо, ответственное за учет и хранение источников излучения, составляет карты—схемы мест размещения источников на рабочих местах и в хранилище, а также мест расположения радиоизотопных приборов и электрофизических устройств, генерирующих ионизирующее излучение, на территории объекта.

В случае увольнения (перевода) ответственного за учет и хранение, все числящиеся за ним источники излучения, передаются по акту, вновь назначенному лицу. При необходимости, проводится внеочередная и н в е н т а р и з а ц и я .

66. Все поступившие в организацию источники излучения должны учитываться в приходно-расходном журнале учета радионуклидных источников излучения согласно приложению 9 к настоящим санитарным правилам.

Приходно-расходные журналы хранят постоянно. Копии технических паспортов (сертификатов) и заказов-заявок на источники излучения хранятся у ответственного за учет и хранение.

Администрация организации обеспечивает сохранность сопроводительных документов на источники излучения в течение всего времени их жизненного цикла. В случае утраты сопроводительных документов предпринимаются меры

В случае невозможности восстановления сопроводительных документов, эксплуатация источников ионизирующего излучения не допускается.

67. Радионуклидные источники излучения учитываются по радионуклиду, наименованию препарата, фасовке и активности согласно сопроводительным документам. Приборы, аппараты и установки, в которых используются радионуклидные источники излучения, учитываются по наименованиям и заводским номерам с указанием активности и номера каждого источника излучения, входящего в комплект.

Генераторы короткоживущих радионуклидов учитываются по их наименованиям и заводским номерам с указанием номинальной активности материнского нуклида. Устройства, генерирующие ионизирующее излучение, учитываются по наименованиям, заводским номерам и году выпуска.

- 68. Радионуклиды, полученные в организации с помощью генераторов, ускорителей, ядерных реакторов, учитываются по фасовкам, препаратам и активностям в приходно–расходном журнале учета радионуклидных источников и з л у ч е н и я .
- 69. Источники излучения выдаются из мест хранения ответственным лицом с письменного разрешения руководителя организации или лица, им уполномоченного по требованию на выдачу радиоактивных веществ по форме согласно приложению 8 к настоящим санитарным правилам.

В случае увольнения (перевода) лиц, допущенных к работам с источниками излучения, администрация принимает по акту все числящиеся за ними источники и з л у ч е н и я .

- 70. Расходование радионуклидов, используемых в открытом виде, оформляется внутренними актами, составляемыми исполнителями работ с участием лиц, ответственных за учет и хранение источников излучения и за производственный радиационный контроль. Акты о расходовании и списании радионуклидных источников излучения организации утверждаются администрацией организации по форме согласно приложению 10 к настоящим с а н и т а р н ы м правилам.
- 71. Ежегодно комиссия, назначенная руководителем организации, производит инвентаризацию радиоактивных веществ, радиоизотопных приборов, аппаратов, у с т а н о в о к .

В состав инвентаризационных комиссий включаются лица ответственные за учет, хранение, а также представители администрации и бухгалтерии.

При большом объеме работ для одновременного проведения инвентаризации по различным подразделениям организации, имеющих источники излучения, по усмотрению администрации, создаются рабочие инвентаризационные комиссии.

- 1) проверку наличия сопроводительных документов на источники излучения (паспортов, сертификатов, заказов-заявок);
- 2) проверку соответствия записей характеристик источники излучения в приходно-расходных журналах с данными, указанными в сопроводительных документах (паспортах, сертификатах);
- 3) проверку фактического наличия источников излучения в местах использования (установки) и/или хранения и соответствие полученных данных записям в приходно-расходных журналах и с данными бухгалтерского учета;
- 4) проверку правильности ведения бухгалтерского учета и записей в приходно-расходных журналах при получении, расходовании, передаче, а также перемещении источников излучения при выполнении работ;
- 5) проверку соответствия карт-схем реальному расположению радионуклидных источников, размещенных в хранилище (сейфе), стационара установленных радиоизотопных приборов (далее РИП). В случае выявления несоответствия, в карты-схемы вносятся соответствующие изменения.

По итогам инвентаризации источников излучения комиссия оформляет Акт инвентаризации, который подписывается всеми членами инвентаризационной комиссии и утверждается руководителем организации, заверяется печатью.

В случае обнаружения хищений и потерь источников излучения администрации следует немедленно информировать вышестоящую организацию, органы государственного санитарно-эпидемиологического надзора и лицензирующий орган.

- 72. Хранение и транспортирование источников излучения необходимо производить по принципу однородности веществ и материалов с учетом требований действующих стандартов.
- 73. Источники излучения, не находящиеся в работе, хранятся в специально отведенных местах или в оборудованных хранилищах, обеспечивающих их сохранность и исключающих доступ к ним посторонних лиц. Активность радионуклидов, находящихся в хранилище, не должна превышать значений, указанных в санитарно-эпидемиологическом заключении.
- 74. На временные хранилища источников излучения вне территории организации, в том числе для гамма-дефектоскопических аппаратов, используемых в полевых условиях, выдается санитарно-эпидемиологическое заключение на соответствие условий работы с источниками излучения (физическими факторами воздействия на человека) требованиям санитарных правил. Мощность дозы на наружной поверхности такого хранилища или его ограждения, исключающего доступ посторонних лиц, не должна превышать 1,0

Временное хранение упаковок с радиоактивными веществами на открытых площадках и общих складах транспортных организаций допускается при наличии санитарно-эпидемиологического заключения.

- 75. Специально оборудованные помещения—хранилища размещаются на уровне нижних отметок здания (незатопляемый подвал, первый этаж).
- 76. Отделка и оборудование помещения для хранения открытых источников излучения отвечает требованиям, предъявляемым к помещениям для работ соответствующего класса, но не ниже II класса.
- 77. Устройства для хранения радионуклидных источников излучения (ниши, колодцы, сейфы) должны быть сконструированы так, чтобы при закладке или извлечении отдельных источников излучения персонал не подвергался облучению от остальных источников излучения. Дверцы секций и упаковки с радиоактивными веществами (контейнеры) должны легко открываться и иметь отчетливую маркировку с указанием наименования радионуклида и его активности. Стеклянные емкости, содержащие радиоактивные жидкости, помещаются в металлические или пластмассовые упаковки.
- 78. Радионуклиды, при хранении которых возможно выделение радиоактивных газов, паров или аэрозолей, хранят в закрытых сосудах, выполненных из несгораемых материалов, с отводом образующихся газов в вытяжных шкафах, боксах, камерах, с очистными фильтрами на вентиляционных системах. Хранилище оборудуется круглосуточно работающей вытяжной в е н т и л я ц и е й .

При хранении радиоактивных веществ с высокой активностью предусматривается система их охлаждения. При хранении делящихся материалов обеспечиваются меры ядерной безопасности. При хранении легковоспламеняющихся или взрывоопасных материалов предусматриваются меры, обеспечивающие их взрыво— и пожаробезопасность.

- 79. Транспортирование радионуклидных источников излучения внутри помещений, а также на территории организации производится в контейнерах и упаковках на специальных транспортных средствах, с учетом физического состояния источников излучения, их активности, вида излучения, габаритов и массы упаковки, с соблюдением условий безопасности.
- 80. На транспортные средства, специально предназначенные для перевозки радиоактивных веществ и ядерных материалов за пределами организации, выдается санитарно—эпидемиологическое заключение на право транспортировки.
- 81. Транспортные средства, предназначенные для перевозки источников излучения, оборудуются знаками радиационной опасности груза, а также сигнальными цветами в соответствии с требованиями действующих стандартов.
 - 82. Уровни радиоактивного загрязнения поверхности транспортных средств

не должны превышать значений, приведенных в таблице 2 приложения 4 к настоящим санитарным правилам.

5. Санитарно-эпидемиологические требования к выводу из эксплуатации радиационных объектов

- 83. Решение о выводе радиационного объекта (источника излучения) из эксплуатации, а также выбор его варианта принимаются после комплексного обследования радиационного и технического состояния технологических систем и оборудования, строительных конструкций и прилегающей территории.
- 84. На радиационных объектах I категории не позднее, чем за пять лет до назначенного срока окончания эксплуатации должен быть разработан детальный проект вывода из эксплуатации всего объекта или отдельной его части, согласованный с государственными органами в области обеспечения радиационной безопасности. Для объектов II категории проект вывода из эксплуатации должен быть разработан не позднее, чем за три года до окончания срока эксплуатации, а для объектов III категории за один год.
- 85. В проекте вывода радиационного объекта из эксплуатации предусматривают мероприятия по обеспечению безопасности на различных этапах вывода его из эксплуатации: остановке, консервации, демонтаже, перепрофилировании, ликвидации или захоронении, а также при проведении ремонтных работ.
 - 86. Проект вывода из эксплуатации радиационного объекта содержит:
- 1) подготовку необходимого оборудования для проведения демонтажных р а б о т ;
 - 2) методы и средства дезактивации демонтируемого оборудования; 3) порядок утилизации радиоактивных отходов.
- 87. При выводе радиационного объекта из эксплуатации следует оценить ожидаемые индивидуальные и коллективные дозы облучения персонала и н а с е л е н и я .
- 88. Работы по выводу радиационных объектов из эксплуатации выполняются специально подготовленным персоналом объекта или персоналом других организаций, имеющих лицензию на предоставление услуг в области использования атомной энергии. В необходимых случаях подготовка персонала проводится на макетах и тренажерах с имитацией основных операций предстоящих работ.
- 89. Радионуклидные источники излучения с истекшим сроком службы, а так же радионуклидные источники излучения, необходимость использования которых отпала или которые в дальнейшем не могут эксплуатироваться,

рассматриваются как радиоактивные отходы и подлежат захоронению в y с т а н о в л е н н о м порядке.

Копия акта о приеме источников излучения на захоронение передается в территориальный государственный орган в сфере санитарно—эпидемиологического благополучия населения и лицензирующий о р г а н .

Не подлежащие использованию радионуклидные источники излучения и РИП допускается хранить на предприятии не более 6 месяцев по разрешению территориального государственного органа в сфере санитарно-эпидемиологического благополучия населения. Хранение таких источников свыше 6 месяцев не допускается.

6. Санитарно-эпидемиологические требования к условиям работы с закрытыми источниками излучения и устройствами, генерирующими ионизирующее излучение

- 90. Эксплуатация закрытых источников излучения и устройств, генерирующих ионизирующее излучение, осуществляется согласно требованиям настоящих санитарных правил, на основании санитарно-эпидемиологического з а к л ю ч е н и я .
- 91. Не допускается использование закрытых источников излучения в случае нарушения их герметичности, а также по истечении установленного срока э к с п л у а т а ц и и .
- 92. Устройство, в которое помещен закрытый источник излучения, должно быть устойчивым к механическим, химическим, температурным и другим воздействиям, иметь знак радиационной опасности.
- 93. В нерабочем положении закрытые источники излучения должны находиться в защитных устройствах, а установки, генерирующие ионизирующее излучение, должны быть обесточены.
- 94. Для извлечения закрытого источника излучения из контейнера используют дистанционные инструменты или специальные приспособления. При работе с источником излучения, извлеченным из защитного контейнера, должны применяться защитные экраны и манипуляторы, а при работе с источником излучения, создающим мощность дозы более 2 мЗв/ч на расстоянии одного метра , специальные защитные устройства (боксы, шкафы) с дистанционным у п р а в л е н и е м .
- 95. Мощность дозы излучения от переносных, передвижных, стационарных дефектоскопических, терапевтических аппаратов и других установок, действие которых основано на использовании радионуклидных источников излучения, не

должна превышать 20 мкЗв/ч на расстоянии одного метра от поверхности защитного блока с источником излучения.

Для радиоизотопных приборов, предназначенных для использования в производственных условиях, мощность дозы излучения у поверхности блока с источником излучения не должна превышать 100 мкЗв/ч, а на расстоянии одного м е т р а о т н е е – 3 м к З в / ч.

Мощность дозы излучения от устройств, при работе которых возникает сопутствующее неиспользуемое рентгеновское излучение, не должна превышать 1,0 мкЗв/ч на расстоянии 0,1 метра от любой поверхности.

- 96. При использовании установок (аппаратов), мощность дозы излучения от которых в рабочем положении и при хранении источников излучения не превышает 1,0 мкЗв/ч на расстоянии одного метра от доступных частей поверхности установки, специальные требования к помещениям не предъявляются.
- 97. Рабочая часть стационарных аппаратов и установок с неограниченным по направлению пучком излучения должна размещаться в отдельном помещении (преимущественно в отдельном здании или отдельном крыле здания); материал и толщина стен, пола, потолка этого помещения при любых положениях источника излучения и направлении пучка должны обеспечивать ослабление первичного и рассеянного излучения в смежных помещениях и на территории организации до д о п у с т и м ы х з н а ч е н и й.

Пульт управления таким аппаратом (установкой) должен размещаться в отдельном от источника излучения помещении. Входная дверь в помещение, где находится аппарат, блокируется с механизмом перемещения источника излучения или с включением высокого (ускоряющего) напряжения так, чтобы исключить возможность случайного облучения персонала.

- 98. Помещения, где проводятся работы на стационарных установках с закрытыми источниками излучения, оборудуют системами блокировки и сигнализации о положении источника (блока источников) и предусматривают устройство для принудительного дистанционного перемещения источника излучения в положение хранения в случае отключения энергопитания установки или в случае любой другой нештатной ситуации.
- 99. При подводном хранении закрытых источников излучения предусматривают системы автоматического поддержания уровня воды в бассейне, сигнализации об изменении уровня воды и о повышении мощности дозы в рабочем помещении.
- 100. При работе с закрытыми источниками излучения специальные требования к отделке помещений не предъявляются. Помещения, в которых проводится перезарядка ремонт блоков излучения и должны быть оборудованы в

соответствии с требованиями для работ с открытыми источниками излучения III к л а с с а .

- 101. При использовании мощных радиационных установок и хранении закрытых источников излучения в количествах, приводящих к накоплению в воздухе рабочих помещений сверхнормативных концентраций токсических веществ, предусматривается приточно-вытяжная вентиляция.
- 102. При использовании приборов с закрытыми источниками излучения и устройств, генерирующих ионизирующее излучение, вне помещений или в общих производственных помещениях должен быть исключен доступ посторонних лиц к источникам излучения и обеспечена сохранность источников.

Радиационная безопасность персонала и населения обеспечивается:

- 1) направлением излучения в сторону земли или в сторону, где отсутствуют л ю д и ;
- 2) удалением источников излучения от обслуживающего персонала и других лиц на возможно большее расстояние;
 - 3) ограничением время пребывания людей вблизи источников излучения;
- 4) установкой знака радиационной опасности и предупредительные плакаты, которые должны быть отчетливо видны с расстояния не менее 3 метра.

7. Санитарно-эпидемиологические требования к условиям работы с радиоизотопными приборами

- 103. На всех этапах обращения с РИП должны обеспечиваться условия, исключающие возможность облучения населения и персонала сверх установленных основных пределов доз техногенного облучения.
- 104. По степени радиационной опасности, в зависимости от вида и активности используемых в их составе источников, устанавливаются 4 группы Р И П :
- 1) 1 группа РИП, содержащие источники альфа или бета–излучения с активностью не более МЗА, приведенной в действующих на территории РК н о р м а т и в а м .

РИП, содержащие источники гамма—излучения с активностью не более МЗА, создающие мощность поглощенной дозы в воздухе не более 1,0 мкГр/ч на расстоянии 0,1 м от поверхности источника;

- 2) 2 группа РИП, содержащие источники альфа или бета–излучения с активностью более M3A, но не более 200 МБк;
- 3) 3 группа РИП, содержащие источники альфа или бета–излучения с активностью более 200 МБк, но не более 2000 МБк; РИП с источниками гамма–излучения, создающими мощность поглощенной

дозы в воздухе более 1,0 мк Γ р/ч на расстоянии 0,1 м от поверхности источника, но не более 3,0 мк Γ р/ч на расстоянии 1,0 м от поверхности источника.

РИП с источниками нейтронов, испускающими не более 10⁵ н/c;

4) 4 группа — РИП, содержащие источники альфа — или бета—излучения с активностью более 2000 МБк

РИП с источниками гамма-излучения, создающими мощность поглощенной дозы в воздухе более 3,0 мкГр/ч на расстоянии 1,0 м от поверхности источника;

РИП с источниками нейтронов, испускающими более 10^5 н/с. РИП 2—4-й групп поставляются предприятиям по заказ-заявкам согласно пункту 55 настоящих санитарных правил.

При получении РИП предприятие проверяет фактическое наличие источника излучения в каждом блоке в соответствии с сопроводительными документами. Проверка проводится специалистами предприятия или силами специализированного предприятия. По результатам проверки составляется акт.

Предприятие, получившее РИП, организовывает хранение блоков источников излучения в специально отведенных для этого местах, исключающих доступ к блокам посторонних лиц и обеспечивающих их сохранность. Сроки хранения блоков источников излучения (в нерабочем состоянии) согласуются с государственным органом в сфере санитарно-эпидемиологического благополучия населения.

Для хранения переносных РИП выделяют отдельное помещение площадью не менее 10 кв.м. Мощность дозы излучения на наружной поверхности стен и двери этого помещения не должна превышать 3 мкЗв/час.

Ответственность за сохранность блоков источников излучения, в том числе и в период установки и ремонта РИП, несет администрация предприятия, которому п р и н а д л е ж и т Р И П .

В период проведения ремонта или модернизации оборудования, на котором установлены блоки источников излучения, лицо, ответственное за учет и хранение РИП, осуществляет контроль за перемещением и сохранностью блоков и с т о ч н и к о в и з л у ч е н и я .

- 105. К непосредственной работе с РИП 2–4 групп (производство, монтаж, ремонт, перезарядка, обслуживание и демонтаж) допускается специально обученный персонал, отнесенный к группе А. Работники, которые по характеру своей деятельности попадают в сферу воздействия ионизирующих излучений РИП, но непосредственно с РИП не работают, включаются в список персонала группы Б, утвержденный руководителем организации.
- 106. Ежегодно комиссия, назначенная руководителем организации, проводит инвентаризацию всех имеющихся в организации РИП. В случае обнаружения

хищений и потерь источников излучения администрация должна немедленно информировать вышестоящую организация и государственный орган в сфере санитарно-эпидемиологического благополучия населения нга соответствующей территории.

- 107. Использование РИП 2–4 групп допускается после оформления организацией санитарно-эпидемиологического заключения на соответствие условий работы с источниками ионизирующего излучения настоящим санитарным правилам, выдаваемого государственным органом в сфере санитарно—эпидемиологического благополучия населения на соответствующей территории, а также лицензии на данный вид деятельности.
- 108. При наличии (обращении) в организации РИП 1-ой группы в количестве , при котором суммарная активность содержащихся в них радионуклидных источников превышает 10 M3A, должно быть получено санитарно-эпидемиологическое заключение.
- 109. Организации, использующие или имеющие в наличии РИП 2-4 групп, ежегодно заполняют и представляют в установленном порядке радиационно—гигиеническое заключение организации (предприятия). Это требование не распространяется на РИП, которым в соответствии с санитарно—эпидемиологическим заключением государственного органа в сфере санитарно—эпидемиологического благополучия населения, не требуется радиационный контроль и учет.
- 110. Организации, занимающиеся конструированием, изготовлением и производством РИП, должны иметь санитарно—эпидемиологическое заключение.
- 111. Изготовление опытных образцов РИП в количестве свыше трех экземпляров допускается по техническим условиям, согласованным с уполномоченным органом в области здравоохранения. Изготовление образцов РИП в количестве не более трех экземпляров допускается по технической документации, согласованной с государственным органом в сфере санитарно-эпидемиологического благополучия населения на соответствующей территории.
- 112. Серийное производство, реализация и использование РИП, в том числе РИП зарубежного производства допускаются при наличии санитарно-эпидемиологического заключения государственного органа в сфере санитарно-эпидемиологического благополучия населения.
- 113. Изменения, вносимые в ранее согласованную техническую документацию на РИП, подлежат согласованию с государственным органом в сфере санитарно-эпидемиологического благополучия населения.
- 114. Требования к технической документации на РИП и к используемым в составе РИП радионуклидным источникам приведены в приложении 11 к

- 115. Условия эксплуатации РИП (давление, температура, влажность, наличие агрессивных сред) должны соответствовать технической документации.
 - 116. При разработке конструкции РИП предусматривается:
- 1) наличие устройств, информирующих о положении источника в блоке (положения «работа» или «хранение»);
- 2) возможность перекрытия выхода прямого пучка излучения за пределы блока источника и снижения уровней излучений до регламентированных величин при нахождении источника в положении «хранение»;
- 3) надежная фиксация источника в положениях «работа» и «хранение», исключающая возможность перевода источника из положения «хранение» в положение «работа» без использования специального ключа, но позволяющая беспрепятственно перевести его из положения «работа» в положение «хранение»;
- 4) невозможность доступа к источнику без использования специального инструмента и без повреждения пломбы изготовителя;
- 5) надежное крепление стационарных РИП, исключающее возможность его несанкционированного съема посторонними лицами.

Первые три требования этого пункта не распространяются на РИП, у которых отсутствует пучок излучения, выводимый за пределы корпуса РИП, и источник н е п о д в и ж е н .

- 117. Радиационная защита блока источника РИП 4 группы, предназначенных для использования в помещениях, имеющих постоянные рабочие места, должна обеспечивать ослабление мощности эквивалентной дозы излучения до величины не более 100 мкЗв/ч на поверхности блока источника и не более 3,0 мкЗв/ч на расстоянии 1,0 м от нее. Для РИП, предназначенных для использования в помещениях, в которых отсутствуют постоянные рабочие места, мощность эквивалентной дозы излучения на расстоянии 1,0 м от поверхности блока источника не должна превышать 20 мкЗв/ч. Эти требования должны выполняться для всех точек при нахождении источника в положении «хранение», и для всех точек вне зоны рабочего пучка излучения, указанной в технической документации, при нахождении источника положении «работа».
- 118. Для РИП 1 группы мощность поглощенной дозы излучения на расстоянии 0,1 м от любой доступной точки их поверхности при любых нормальных условиях эксплуатации не должна превышать 1,0 мкЗв/ч. Для РИП 1 группы, а также РИП, которым в соответствии с санитарно—эпидемиологическим заключением государственного органа в сфере санитарно—эпидемиологического благополучия населения не требуется радиационный контроль и учет, допускается наносить знак радиационной опасности на внутренней поверхности

корпуса или на блоке источника.

Для РИП 2 группы это условие должно выполняться для всех точек, за исключением зоны рабочего пучка излучения, указанной в технической документации, при нахождении источника в положении «работа».

- 119. Конструкция радиационной защиты РИП (блоков источников) должна быть устойчивой к механическим, химическим, температурным и другим в о з д е й с т в и я м .
- 120. Работа с переносными РИП, мощность эквивалентной дозы излучения на расстоянии 1,0 м от любой доступной точки поверхности которых, при любых нормальных условиях эксплуатации не превышает 1,0 мкЗв/ч, может проводиться в любых производственных помещениях и на открытом воздухе. Работа с переносными РИП, для которых это требование не выполняется, допускается только при наличии санитарно—эпидемиологического заключения на соответствие настоящим санитарным правилам.
- 121. На наружную поверхность РИП (блок источника) наносят знак радиационной опасности отчетливо видимый с расстояния не менее 3,0 м. Для соответствии РИП РИП, группы, также которым В санитарно-эпидемиологическим заключением не требуется радиационный контроль и учет, допускается наносить знак радиационной опасности на поверхности корпуса или на блоке

При проектировании радиационной защиты РИП во всех случаях должен использоваться коэффициент запаса равный 2.

- 122. Установка стационарных РИП 2-4 групп осуществляется в строгом соответствии с технической документацией и проектом, согласованным с государственным органом в сфере санитарно-эпидемиологического благополучия населения на соответствующей территории. Способ установки и крепления РИП должен исключать возможность несанкционированного использования их посторонними лицами и обеспечивать сохранность источников
- 123. При установке РИП 4-й группы они максимально удаляются от постоянных рабочих мест.
- 124. При использовании РИП 2-4 групп должны выполняться следующие т р е б о в а н и я :
- 1) пучок излучения направляется в наиболее безопасную для работающих в данном помещении сторону (в сторону земли, в сторону капитальной стены);
- 2) установку РИП осуществлять так, чтобы мощность дозы на постоянных рабочих местах и в местах возможного нахождения людей не превышала 1,0 мкЗв/ч, используя дополнительные средства радиационной защиты (стационарные или переносные);

- 3) не допускать наличия постоянных рабочих мест на расстоянии менее 1,0 м от поверхности блока источников стационарных РИП 3-4 групп и исключать доступ в эту зону посторонних лиц.
- 125. Монтаж и наладка РИП 3-4 групп, перезарядка блоков источников, а также их ремонт и техническое обслуживание осуществляют прошедшие соответствующую подготовку сотрудники эксплуатирующей или иной организации, имеющей лицензию на этот вид деятельности.
- 126. После монтажа и наладки стационарных РИП 3-4 групп организацией, аккредитованной на право проведения соответствующих видов измерений, в присутствии лица, ответственного за радиационную безопасность, должна быть измерена мощность эквивалентной дозы излучения:
- 1) на наружной поверхности блока источника (РИП) и на расстоянии 1,0 м от н е е ;
 - 2) на ближайших рабочих местах;
- 3) в местах возможного доступа лиц, не связанных с эксплуатацией РИП и оборудования, на котором он установлен;
 - 4) проведен контроль радиоактивного загрязнения поверхности блока.
- 127. По результатам проведенных измерений оформляются два экземпляра протокола измерений. Один экземпляр остается в эксплуатирующей организации, а второй в организации, проводившей монтаж и наладку РИП.
- 128. После завершения монтажа и наладки стационарных РИП 3-4 групп и проведения необходимого радиационного контроля они принимаются в эксплуатацию комиссией, включающей представителей эксплуатирующей организации; государственного органа в сфере санитарно-эпидемиологического благополучия населения, организации, осуществлявшей монтаж и наладку РИП, и организации, проводившей радиационный контроль. Приемка РИП в эксплуатацию оформляется актом, один экземпляр которого хранится в эксплуатирующей организации.
- 129. Для приемки стационарных РИП 3-4 групп в эксплуатацию организация представляет комиссии:
- 1) техническую документацию на РИП, согласованную с государственным органом в сфере санитарно-эпидемиологического благополучия населения;
 - 2) санитарно-эпидемиологическое заключение на РИП;
 - 3) паспорта источников, установленных в блоках источников РИП;
 - 4) проект размещения РИП (для стационарных РИП);
 - 5) протокол измерений;
- 6) приказы о назначении лица, ответственного за радиационную безопасность (при отсутствии в организации службы радиационной безопасности), а также лиц, ответственных за учет и хранение источников;

- 7) инструкцию по радиационной безопасности при использовании РИП;
- 8) инструкцию по предупреждению радиационных аварий и ликвидации их последствий;
- 9) положение о службе радиационной безопасности или лице, ответственном за радиационную безопасность;
- 10) положение о порядке проведения производственного радиационного к о н т р о л я ;
 - 11) приходно-расходный журнал;
- 12) список сотрудников организации, отнесенных к персоналу групп А и Б, утвержденный приказом руководителя организации;
 - 13) журнал инструктажа персонала по радиационной безопасности.
- 130. Использование принятых в эксплуатацию РИП 3-4 групп допускается при наличии санитарно—эпидемиологического заключения государственного органа в сфере санитарно—эпидемиологического благополучия населения на соответствие условий работы с источниками ионизирующего излучения настоящим санитарным правилам.
- 131. Извлечение источников из блоков источников РИП, если это не предусмотрено инструкцией по эксплуатации, не допускается.
- 132. Зарядка (перезарядка) блока источника производится только источниками, указанными в технической документации на РИП. Не допускается использовать для этой цели источники, не предусмотренные технической документацией, отличающиеся от них по физическим параметрам (активность, радионуклид, размеры) или с истекшим сроком эксплуатации.
- 133. РИП всех групп, не подлежащие дальнейшему использованию, должны быть демонтированы и сданы на захоронение в специализированные организации. Работы по демонтажу стационарных РИП 2-4 групп, должны выполняться силами организации, имеющей лицензию на этот вид деятельности.

8. Санитарно-эпидемиологические требования к условиям работы с открытыми источниками излучения (радиоактивными веществами)

- 134. Все работы с использованием открытых источников излучения разделяются на три класса. Класс работ устанавливается по таблице 3 приложения 4 к настоящим санитарным правилам в зависимости от группы радиационной опасности радионуклида и его активности на рабочем месте, при условии, что удельная активность превышает значение, приведенное в ГН.
- 135. Радионуклиды как потенциальные источники внутреннего облучения разделяются по степени радиационной опасности на четыре группы в зависимости и от МЗА:

- 1) группа A радионуклиды с минимально значимой активностью 10^3 Бк;
- 2) группа Б радионуклиды с минимально значимой активностью 10^4 и 10^5 Б к ;
- 3) группа В радионуклиды с минимально значимой активностью 10^6 и 10^7 Б к ;
- 4) группа Γ радионуклиды с минимально значимой активностью 10^8 Бк и б о л е е .

Принадлежность радионуклида к группе радиационной опасности устанавливается в соответствии с ГН

В случае нахождения на рабочем месте радионуклидов разных групп радиационной опасности их активность приводится к группе А радиационной опасности по формуле:

$$C_{3} = C_{4} + M3A_{4} \sum (C_{1} / M3A_{4})$$

где $C_{\mathfrak{Z}}$ — суммарная активность, приведенная к активности группы A, Бк; C_{A} — суммарная активность радионуклидов группы A, Бк; $M3A_{A}$ — минимально значимая активность для группы A, Бк; C_{i} — активность отдельных радионуклидов, не относящихся к группе A; $M3A_{i}$ — минимально значимая активность отдельных радионуклидов, п р и в е д е н н а я

- 136. Классом работ определяются требования к размещению и оборудованию помещений, в которых проводятся работы с открытыми источниками излучения.
- 137. При работе с открытыми источниками излучения должна обеспечиваться защита персонала от внутреннего и внешнего облучения, ограничиваться загрязнение воздуха и поверхностей рабочих помещений, кожных покровов и одежды персонала, а также объектов окружающей среды (воздух, почва, растительность), как при нормальной эксплуатации, так и при проведении работ по ликвидации последствий радиационной аварии.
- 138. Ограничение поступления радионуклидов в рабочие помещения и окружающую среду обеспечивается использованием системы статических (оборудование, стены и перекрытия помещений) и динамических (вентиляция и газоочистка) барьеров.
- 139. Во всех организациях, в которых проводится работа с открытыми источниками излучения, помещения для каждого класса работ должны быть сосредоточены в одном месте. В тех случаях, когда в организации ведутся работы по всем трем классам, помещения разделяют в соответствии с классом проводимых в них работ.

- 140. Работы с открытыми источниками излучения с активностью ниже значений, приведенных в ГН, допускается проводить в производственных помещениях, к которым не предъявляются дополнительные требования по радиационной безопасности.
- 141. Работы III класса проводятся в отдельных помещениях, соответствующих требованиям, предъявляемым к химическим лабораториям. В составе этих помещений предусматривается устройство приточно-вытяжной вентиляции и душевой. Работы, связанные с возможностью радиоактивного загрязнения воздуха (операции с порошками, упаривание растворов, работа с эманирующими и летучими веществами), должны проводиться в вытяжных ш к а ф а х .
- 142. Работы II класса проводятся в помещениях, размещенных в отдельной части здания изолированно от других помещений. При проведении в одной организации работ II и III классов, связанных единой технологией, допускается выделить общий блок помещений, оборудованных в соответствии с требованиями, предъявляемыми к работам II класса.

При планировке выделяются помещения постоянного и временного пребывания персонала.

В составе этих помещений предусматривается санитарный пропускник или санитарный шлюз. Помещения для работ II класса оборудуются вытяжными ш к а ф а м и и л и б о к с а м и .

- 143. Работы I класса проводят в отдельном здании или изолированной части здания с отдельным входом через санитарный пропускник. Рабочие помещения оборудуют боксами, камерами, каньонами или другим герметичным оборудованием. Помещения разделяются на три зоны:
- 1) первая зона необслуживаемые помещения, где размещают технологическое оборудование и коммуникации, являющиеся основными источниками излучения и радиоактивного загрязнения. Пребывание персонала в необслуживаемых помещениях при работающем технологическом оборудовании н е д о п у с к а е т с я ;
- 2) вторая зона периодически обслуживаемые помещения, предназначенные для ремонта оборудования и других работ, связанных с вскрытием технологического оборудования, размещением узлов загрузки и выгрузки радиоактивных материалов, временного хранения сырья, готовой продукции и радиоактивных и отходов;
- 3) третья зона помещения постоянного пребывания персонала в течение всей смены (операторские, пульты управления);
- 4) для исключения распространения радиоактивного загрязнения между зонами оборудуются санитарные шлюзы;

- 5) при работах I класса в зависимости от назначения радиационного объекта и эффективности применяемых барьеров допускается двухзональная планировка рабочих помещений. Требования радиационной безопасности для этих условий регламентируются специальными правилами.
- 144. В помещениях для работ I и II классов управление общими системами отопления, газоснабжения, сжатого воздуха, водопровода и групповые электрические щитки должны быть вынесены из рабочих помещений.
- 145. Для снижения уровней внешнего облучения персонала от открытых источников излучения используются системы автоматизации и дистанционного управления, экранирование источников излучения и сокращение времени р а б о ч и х о п е р а ц и й.
- 146. В организации, где проводятся работы с радиоактивными веществами, предусматривается комплекс мероприятий по дезактивации производственных помещений и оборудования.
- 147. Полы и стены помещений для работ II класса и 3-й зоны I класса, а также потолки в 1-й и 2-й зонах I класса покрывают гладким слабосорбирующим материалом стойким к моющим средствам. Помещения, относящиеся к разным зонам и классам, окрашивают в разные цвета.
- 148. Края покрытий пола должны быть подняты и заделаны заподлицо со стенами. При наличии трапов пол должен иметь уклоны. Полотна дверей и переплеты окон должны иметь простейшие профили.
- 149. Высота помещений для работы с радиоактивными веществами и площадь в расчете на одного работающего определяются требованиями строительных норм и правил. Для работ I и II классов площадь помещения в расчете на одного работающего должна быть не менее 10 квадратных метров.
- 150. Оборудование и рабочая мебель должны иметь гладкую поверхность, простую конструкцию и слабосорбирующие покрытия, облегчающие удаление радиоактивных загрязнений.
- 151. Оборудование, инструменты и мебель закрепляются за помещениями каждого класса (зонами) и соответственно маркируются. Передача их из помещений одного класса (зоны) в другие не допускается.
- 152. Производственные операции с радиоактивными веществами в камерах и боксах выполняются дистанционными средствами или с использованием перчаток, герметично вмонтированных в фасадную стенку. Загрузка и выгрузка перерабатываемой продукции, оборудования, замена камерных перчаток, манипуляторов производится без разгерметизации камер или боксов.
- 153. Количество радиоактивных веществ на рабочем месте должно быть минимально необходимым для работы. При возможности выбора радиоактивных веществ, используют вещества меньшей группы радиационной опасности,

растворы, а не порошки, растворы с наименьшей удельной активностью.

Число операций, при которых возможно радиоактивное загрязнение помещений и окружающей среды (пересыпание порошков, возгонка), следует сводить к минимуму. При ручных операциях с радиоактивными растворами используют автоматические пипетки или пипетки с грушами.

- 154. Организация работ с открытыми источниками должна быть направлена на минимизацию радиоактивных отходов, образующихся при технологических процессах (операциях).
- 155. Для ограничения загрязнения рабочих поверхностей, оборудования и помещений, при работах с радиоактивными веществами в лабораторных условиях, используют лотки и поддоны, выполненные из слабосорбирующих материалов, пластиковыми пленками, фильтровальной бумагой и другими материалами разового пользования.
- 156. При работе с открытыми источниками излучения вентиляционные и воздухоочистные устройства должны обеспечивать защиту от радиоактивного загрязнения воздуха рабочих помещений и атмосферного воздуха. Рабочие помещения, вытяжные шкафы, боксы, каньоны и другое технологическое оборудование должны быть устроены так, чтобы поток воздуха был направлен из менее загрязненных пространств к более загрязненным.
- 157. Проектирование вентиляции и кондиционирования воздуха в производственных зданиях и сооружениях организации, а также выбросов вентиляционного воздуха в атмосферу и очистки его перед выбросом производят в соответствии с требованиями настоящих санитарных правил. Для организаций, у которых выбросы радиоактивных веществ в атмосферу могут создавать дозу у критической группы населения более 10 мкЗв/год, предельно допустимые выбросы устанавливают на основании санитарно-эпидемиологического заключения о соответствии требованиям настоящих санитарных правил.
- 158. Удаляемый из укрытий, боксов, камер, шкафов и другого оборудования загрязненный воздух перед выбросом в атмосферу подвергается очистке. Не допускается разбавление этого воздуха до его очистки.

В организациях, где проводятся работы I и II классов, предусматривают вытяжные трубы, высота которых должна обеспечивать снижение объемной активности радиоактивных веществ в атмосферном воздухе в месте приземления факела до значений, обеспечивающих не превышение установленной квоты предела дозы для населения.

159. Допускается удалять воздух во внешнюю среду без очистки, если его суммарный выброс за год не превысит установленного для организации допустимого значения выброса. При этом уровни внешнего и внутреннего облучения населения не должны превышать установленных квот.

- 160. В зданиях, где для работ с открытыми источниками излучения отводится только часть общей площади, необходимо предусматривать отдельные системы в е н т и л я ц и и .
- 161. При использовании системы рециркуляции воздуха должна обеспечиваться очистка от радиоактивных и токсических веществ и аэрация помещений для работ I и II классов.
- 162. В герметичных камерах и боксах при закрытых проемах должно обеспечиваться разрежение не менее 20 миллиметров водяного столба, камеры и боксы оборудоваться приборами контроля степени разрежения. Расчетная скорость движения воздуха в рабочих проемах вытяжных шкафов и укрытий принимается равной 1,5 метров в секунду.

Допускается кратковременное снижение разрежения до 10 миллиметров водяного столба и снижение скорости воздуха в открываемых проемах до 0,5 м е т р о в в с е к у н д у .

163. Вентиляторы, обеспечивающие вытяжные шкафы, боксы и камеры, располагают в специальных отдельных помещениях. В помещениях для работ I класса вытяжная камера должна входить в состав помещений второй зоны; вентиляционные системы, обслуживающие помещения для работ I класса, иметь резервные агрегаты производительностью не менее 1/3 полной расчетной.

Пускатели двигателей должны иметь световую сигнализацию, их размещают в помещениях 3 зоны

- 164. Для работ с эманирующими и летучими радиоактивными веществами должна предусматриваться постоянно действующая система вытяжной вентиляции хранилищ, рабочих помещений и боксов. Система должна иметь резервный вытяжной агрегат производительностью не менее 1/3 полной р а с ч е т н о й .
- 165. Основными требованиями при выборе и устройстве систем и установок пылегазоочистки при работах с радиоактивными веществами I и II классов я в л я ю т с я :
- 1) минимальное число единиц пылегазоочистного оборудования;
- 2) механизация и автоматизация процессов обслуживания, ремонта и замены пылегазоочистного оборудования, в необходимых случаях дистанционное производство этих работ;
- 3) наличие систем контроля и сигнализации за эффективностью работы очистных аппаратов и фильтров; в случае многоступенчатой системы пылегазоочистки предусматривается автоматизированный контроль и сигнализация, как за работой всей системы, так и отдельных ее частей (ступеней)
 - 4) надежная изоляция пылегазоочистного оборудования как источника

излучения, обеспечение безопасности персонала при обслуживании.

- 166. Фильтры и аппараты устанавливаются непосредственно у боксов, камер, шкафов, укрытий с тем, чтобы максимально снизить загрязнение систем магистральных воздухоотводов.
- 167. При размещении пылегазоочистного оборудования в отдельных помещениях (частях зданий, отдельных зданиях) к ним предъявляются те же требования, что и к основным производственным помещениям. В случае размещения пылегазоочистного оборудования на чердаке, он должен быть оборудован как технический этаж.
- 168. Помещения пылегазоочистного оборудования должны быть изолированы и не сообщаться по воздуху с основными производственными помещениями и зонами. Вход и выход в помещения пылегазоочистного оборудования осуществляется через санитарный шлюз
- 169. В комплексе помещений пылегазоочистного оборудования предусматриваются изолированные помещения или герметичные вентилируемые участки для ремонта, разборки, временного хранения фильтров, аппаратов и их элементов, а также для хранения средств уборки и дезактивации.
- 170. При централизованном размещении пылегазоочистного оборудования на участках для работ I класса в основу планировки комплекса пылегазоочистки должен быть положен принцип зонирования.
- 171. В помещениях для работ I класса и отдельных работ II класса при зональном размещении оборудования необходимо предусматривать подачу воздуха к шланговым изолирующим индивидуальным средствам защиты персонала (пневмокостюмам, пневмошлемам, шланговым противогазам), а также возможность подключения передвижных вытяжных установок к системам вытяжной вентиляции.

Для подачи воздуха к шланговым средствам защиты допускается устанавливать отдельную пневмолинию или отдельные вентиляторы, обеспечивающие необходимое давление и расход воздуха. Места присоединения шлангов снабжаются шаровыми или пружинными автоматическими клапанами.

- 172. Отопление помещений для работ с применением открытых источников излучения предусматривается водяным или электрическим.
- 173. Организации, где ведутся работы с открытыми источниками излучения всех классов, должны иметь холодное и горячее водоснабжение и канализацию. Исключение допускается для полевых лабораторий, ведущих работы III класса и располагающихся вне населенных пунктов или в населенных пунктах, не имеющих центрального водоснабжения.

Требования к устройству водопровода, отопления и хозяйственно-бытовой канализации регламентируются строительными нормами и правилами.

- 174. В помещениях для работ I и II классов краны для воды, подаваемой к раковинам, должны иметь смесители и открываться при помощи педального, локтевого или бесконтактного устройства. Промывка унитазов должна осуществляться педальным спуском воды. В умывальниках должны быть электросушилки для рук.
- 175. Система специальной канализации должна предусматривать дезактивацию сточных вод и возможность их повторного использования для технологических целей. Очистные сооружения должны располагаться в специальном помещении или на выгороженном участке территории организации. Система канализации обеспечивается средствами контроля за количеством и активностью сточных вод.

Приемники для слива радиоактивных растворов (раковины, трапы) в системе специальной канализации должны быть изготовлены из коррозионно—стойких материалов или иметь легко дезактивируемые коррозионно—стойкие покрытия внутренних и наружных поверхностей. Конструкция приемников должна исключать возможность разбрызгивания растворов.

- 176. Прокладка воздуховодов, труб водопровода, канализации и других коммуникаций в стенах и перекрытиях не должна приводить к ослаблению защиты от ионизирующего излучения.
- 177. Санитарный пропускник размещается в здании, в котором проводятся работы с открытыми источниками излучения или в отдельной части здания, соединенной с производственным корпусом (лабораторией) закрытой галереей.

В состав санитарного пропускника входят: душевые, гардеробная домашней одежды, гардеробная специальной одежды, помещения для хранения средств индивидуальной защиты, пункт радиометрического контроля кожных покровов и спецодежды, кладовая грязной спецодежды, кладовая чистой спецодежды, т у а л е т н ы е к о м н а т ы .

В санитарном пропускнике устраивается питьевой фонтанчик с педальным или бесконтактным управлением.

- 178. Планировка санитарного пропускника должна обеспечивать раздельное прохождение персонала в рабочие помещения и в обратном направлении по разным маршрутам.
- 179. Стационарные санитарные шлюзы размещаются между второй и третьей зонами рабочих помещений. В зависимости от объема и характера проводимых работ в санитарных шлюзах предусматриваются:
- 1) места для переодевания, хранения и предварительной дезактивации дополнительных средств индивидуальной защиты;
 - 2) умывальники;
 - 3) пункт радиационного контроля.

Помимо стационарных санитарных шлюзов, допускается использование переносных санитарных шлюзов, устанавливаемых непосредственно у входа в помещение, где производятся ремонтные работы.

- 180. Пол, стены и потолок санитарно-бытовых помещений, а также поверхности шкафов должны иметь влагостойкие покрытия, слабо сорбирующие радиоактивные вещества и допускающие легкую очистку и дезактивацию.
- 181. Число мест для хранения домашней и рабочей одежды в гардеробной должно соответствовать максимальному числу людей, постоянно и временно работающих в смене.
- 182. Размещение кладовой для грязной специальной одежды должно обеспечивать закрытую транспортировку одежды, направляемой в стирку, с выходом на улицу, минуя чистые помещения. Кладовая располагается вблизи пунктов радиометрического контроля и гардеробной загрязненной специальной о д е ж д ы .

Сортировка специальной одежды производиться по ее виду и степени радиоактивного загрязнения. Загрязненная специальная одежда из раздевалки передается в кладовую в упакованном виде.

- 183. Помещения для хранения и выдачи средств индивидуальной защиты (фартуки, очки, респираторы, дополнительная обувь) размещается в чистой зоне, между гардеробной чистой специальной одежды и рабочими помещениями.
- 184. Пункт радиометрического контроля кожных покровов размещается между душевой и гардеробной домашней одежды.

9. Санитарно-эпидемиологические требования к применению материалов и изделий, загрязненных или содержащих радионуклиды

- 185. Материалы и изделия с низкими уровнями содержания радионуклидов допускается использовать в работе. Критерием для принятия решения о возможном использовании сырья, материалов и изделий, содержащих радионуклиды, является ожидаемая индивидуальная годовая эффективная доза облучения, которая при планируемом виде их использования не должна превышать 10 мкЗв, годовая коллективная эффективная доза не должна быть более одного человека-Зиверт.
- 186. Не допускается наличие нефиксированного (снимаемого) радиоактивного загрязнения на поверхности материалов и изделий (металл, древесина), поступающих для использования.
- 187. Не ограничивается использование любых твердых материалов, сырья и изделий при удельной активности радионуклидов в них менее 0,3 килобеккерель на килограмм (далее кБк/кг).

- 188. Сырье, материалы и изделия с удельной бета-активностью от 0,3 до 100 кБк/кг, или с удельной альфа-активностью от 0,3 до 10 кБк/кг, или с содержанием трансурановых радионуклидов от 0,3 до 1,0 кБк/кг могут ограниченно использоваться при наличии санитарно-эпидемиологического заключения на определенный вид применения. Эти материалы подлежат обязательному радиационному контролю.
- 189. Использование строительных материалов и удобрений, содержащих радиоактивные вещества природного происхождения, должно соответствовать Γ Γ Γ Γ Γ Γ Γ Γ
- 190. Предназначенные для дальнейшего использования по прямому назначению материалы и изделия, содержащие радиоактивные вещества выше уровней, приведенных в пункте 189 настоящих санитарных правил и в ГН, подлежат дезактивации.

Дезактивация проводится в случаях, когда уровень загрязненности материалов и изделий может быть снижен до допустимых значений.

- 191. Протокол о содержании радионуклидов и об отсутствии снимаемого радиоактивного загрязнения в сырье, материалах и изделиях, предназначенных для вывоза с радиационного объекта, выдает служба радиационной безопасности д а н н о й о р г а н и з а ц и и .
- 192. Предназначенное для отправки на перерабатывающие объекты загрязненное металлическое сырье после его дезактивации подлежит предварительной переплавке или иной переработке на радиационных объектах, исключающей образование вторичных радиоактивных отходов при любых вариантах дальнейшего использования переплавленного металла.
- 193. Организации, в которых производится дезактивация, переплавка или иная переработка материалов, содержащих радионуклиды, должны иметь санитарно—эпидемиологическое заключение и лицензию на указанный вид деятельности. Технология переработки сырья и его дальнейшего использования разрабатывается и утверждается в соответствии с санитарно эпидемиологическим заключением.
- 194. Числовые значения допустимой удельной активности по основным долгоживущим радионуклидам для неограниченного использования металлов после предварительной переплавки или иной переработки приведены в приложении 12 к настоящим санитарным правилам.
- 195. В случае невозможности или нецелесообразности использования сырья, материалов и изделий, отнесенных к категории ограниченного использования, согласно пункту 189 настоящих санитарных правил, они направляются на специально выделенные участки в места захоронения промышленных отходов. Эти материалы не должны иметь снимаемого радиоактивного загрязнения.

Порядок, условия и способы захоронения таких производственных отходов осуществляются в соответствии с санитарно-эпидемиологическим заключением.

196. В случае невозможности или нецелесообразности дальнейшего использования материалов, изделий и сырья, содержащих радионуклиды выше значений, приведенных в пункте 189 настоящих санитарных правил, с ними обращаются как с радиоактивными отходами.

10. Санитарно-эпидемиологические требования к сбору, временному хранению, транспортированию и захоронению радиоактивных отходов

197. Радиоактивные отходы по агрегатному состоянию подразделяются на жидкие, твердые и газообразные.

198. В бытовую канализацию допускается сброс радиоактивных сточных вод, превышающий уровней вмешательства для питьевой воды, приведенные в ГН, если обеспечивается их десятикратное разбавление нерадиоактивными сточными водами в коллекторе данного учреждения, а суммарный сброс радиоактивных веществ в водоем не превысит установленного уровня допустимого сброса, осуществляемого при обязательном радиационном контроле.

При малых количествах жидких радиоактивных отходов (не менее 200 л/сут.) , а также при невозможности их разбавления, отходы собираются в специальные емкости для последующего удаления на специализированный комбинат или пункт захоронения радиоактивных отходов.

- 199. Твердые радиоактивные отходы и жидкие радиоактивные отходы, содержащие короткоживущие нуклиды с периодом полураспада до 15 суток, выдерживаются в течение времени, обеспечивающего снижение активности до 3 н а ч е н и й м е н ь ш и х :
 - 1) жидкие радиоактивные отходы: слабоактивные 370 кБк/л; 370 кБк/л Γ Бк/л; среднеактивные OT37 ГБк/л высокоактивные И выше;
 - 2) твердые отходы считаются радиоактивными, если: удельная активность больше 74 кБк/кг для бета-активных веществ; больше 200 мк3в/ч для гамма-активных веществ; больше 7,4 кБк/кг для альфа-активных веществ (для радионуклидов

трансурановых элементов больше 0,37 кБк/кг);

уровни загрязнения поверхностей превышают 0,04 Бк/см 2 альфа—частиц или 0 , 4 Б к / с м 2 б е т а – ч а с т и ц .

После такой выдержки TPO удаляются с обычным мусором на организованные свалки, а ЖРО –в хозяйственно-бытовую канализацию при

- 200. К газообразным радиоактивным отходам относятся не подлежащие использованию радиоактивные газы и аэрозоли, образующиеся при производственных процессах с объемной активностью, превышающей ДОА, приведенные в
- 201. Радиоактивные отходы подразделяются по удельной активности на три категории низкоактивные, среднеактивные и высокоактивные согласно таблице 4 приложения 4 к настоящим санитарным правилам.
- 202. В случае, когда по приведенным характеристикам радионуклидов отходы относятся к разным категориям, устанавливается для них более высокое значение категории отходов.
- 203. Система обращения с радиоактивными отходами в местах их образования определяется проектом для каждой организации, планирующей работы с открытыми источниками излучения. Проведение работ с радиоактивными веществами без наличия условий для сбора и временного хранения радиоактивных отходов не допускается.
- 204. Газообразные радиоактивные отходы подлежат выдержке и (или) очистке на фильтрах с целью снижения их активности до уровней, регламентируемых допустимым выбросом, после чего могут быть удалены в а т м о с ф е р у .
- 205. Система обращения с жидкими и твердыми радиоактивными отходами включает их сбор, сортировку, упаковку, временное хранение, кондиционирование (концентрирование, затвердевание, прессование, сжигание), транспортирование, длительное хранение и (или) захоронение.
- 206. Сбор радиоактивных отходов в организациях производится непосредственно в местах их образования отдельно от обычных отходов с у ч е т о м :
 - 1) категории отходов;
 - 2) агрегатного состояния (твердые, жидкие);
 - 3) физических и химических характеристик;
 - 4) природы (органические и неорганические);
- 5) периода полураспада радионуклидов, находящихся в отходах (менее 15 с у т о к , б о л е е 1 5 с у т о к);
 - б) взрыво- и огнеопасности;
 - 7) принятых методов переработки отходов.
- 207. Для сбора радиоактивных отходов в организации должны быть специальные сборники. Для первичного сбора твердых радиоактивных отходов могут быть использованы пластикатовые или бумажные мешки, которые затем загружаются в сборники–контейнеры. Места расположения сборников при

необходимости обеспечиваются защитными приспособлениями для снижения излучения за их пределами до допустимого уровня.

- 208. Для временного хранения и выдержки сборников с радиоактивными отходами, создающими у поверхности дозу гамма—излучения более 2 мЗв/ч, устраиваются специальные защитные колодцы или ниши. Извлечение сборников отходов из колодцев и ниш производят специальными устройствами, исключающими переоблучение обслуживающего персонала.
- 209. Жидкие радиоактивные отходы собирают в специальные емкости, концентрируют и переводят в затвердевшее состояние в организации, где они образуются или в специализированной организации по обращению с радиоактивными отходами, после чего направляют на захоронение.

В организациях, где образуется значительное количество жидких радиоактивных отходов (более 200 литров в день), проектом предусматривается система специальной канализации, в которую не должны сбрасываться нерадиоактивные стоки.

- 210. Не допускается сброс жидких радиоактивных отходов в хозяйственно-бытовую и ливневую канализацию, водоемы, поглощающие ямы, колодцы, скважины, на поля орошения, поля фильтрации, в системы подземного орошения и на поверхность земли, если не обеспечивается их десятикратное разбавление с нерадиоактивными сточными водами в коллекторе данного у ч р е ж д е н и я .
- 211. Временное хранение радиоактивных отходов различных категорий в организации осуществляется в отдельном помещении, либо на специально выделенном участке, оборудованном в соответствии с требованиями, предъявляемыми к помещениям для работ II класса. Хранение радиоактивных отходов осуществляют в специальных контейнерах.
- 212. Радиоактивные отходы, содержащие радионуклиды с периодом полураспада менее 15 суток, собирают отдельно от других радиоактивных отходов и выдерживают в местах временного хранения для снижения активности до уровней, не превышающих приведенных в пункте 200 настоящих санитарных правил. После такой выдержки твердые отходы удаляют, как обычные промышленные отходы, а жидкие отходы могут использоваться организацией в системе оборотного хозяйственно—технического водоснабжения или сливаться в хозяйственно—бытовую канализацию с учетом требований пункта 200 настоящих с а н и т а р н ы х п р а в и л .

Сроки выдержки радиоактивных отходов с содержанием большого количества органических веществ (трупы экспериментальных животных) не должны превышать 5 суток в случае, если не обеспечиваются условия хранения (выдержки) в холодильных установках или соответствующих растворах.

- 213. Самовоспламеняющиеся и взрывоопасные радиоактивные отходы до отправки на захоронение должны быть переведены в неопасное состояние, с соблюдением радиационной и пожарной безопасности.
- 214. Передача радиоактивных отходов из организации на переработку или захоронение производится в специальных контейнерах и оформляется паспорт по установленной форме, утвержденной Постановлением Правительства Республики Казахстан «Об утверждении санитарных правил « Санитарно-эпидемиологические требования к радиационно-опасным объектам».

Уровни радиоактивного загрязнения на поверхностях упаковки (контейнера) не должны превышать значений, приведенных в таблице 2 приложения 4 к настоящим санитарным правилам.

- 215. Транспортировка радиоактивных отходов проводится в механически прочных герметичных упаковках на специально оборудованных транспортных средствах на основании санитарно-эпидемиологического заключения и при наличии санитарно-эпидемиологического заключения на право транспортировки радиоактивных веществ и ядерных материалов, устройств и установок с источниками излучения и радиоактивных отходов.
- 216. Переработку радиоактивных отходов, а также их долговременное хранение и захоронение производят специализированные организации по обращению с радиоактивными отходами.

В отдельных случаях возможно осуществление в одной организации всех этапов обращения с радиоактивными отходами, вплоть до их захоронения, если это предусмотрено проектом и при наличии лицензии. Захоронение высокоактивных, среднеактивных и низкоактивных отходов должно о с у щ е с т в л я т ь с я р а з д е л ь н о .

- 217. Выбор мест захоронения радиоактивных отходов производится с учетом гидрогеологических, геоморфологических, тектонических и сейсмических условий. При этом должна быть обеспечена радиационная безопасность населения и окружающей среды в течение всего срока изоляции отходов с учетом долговременного прогноза.
- 218. Индивидуальная эффективная доза облучения отдельных лиц из населения, обусловленная радиоактивными отходами, включая этапы хранения и захоронения, не должна превышать 10 мкЗв/год, а коллективная доза не должна превышать 1 чел.-Зв в год.

11. Санитарно-эпидемиологические требования к осуществлению производственного радиационного контроля

- 219. Радиационный контроль охватывает все основные виды воздействия ионизирующего излучения на человека.
- 220. Целью радиационного контроля является получение информации об индивидуальных и коллективных дозах облучения персонала, пациентов и населения при всех условиях жизнедеятельности человека, а также сведений о всех регламентируемых величинах, характеризующих радиационную обстановку
- 221. Объектами радиационного контроля являются:
 1) персонал групп А и Б при воздействии на них ионизирующего излучения в производственных условиях;
- 2) пациенты при выполнении медицинских рентгенорадиологических п р о ц е д у р ;
- 3) население при воздействии на него природных и техногенных источников и з л у ч е н и я ;
 - 4) среда обитания человека.
- 222. Радиационный контроль при работе с техногенными источниками излучения осуществляется за всеми основными радиационными показателями, определяющими уровни облучения персонала и населения. В каждой организации система радиационного контроля должна предусматривать конкретный перечень видов контроля, типов радиометрической и дозиметрической аппаратуры, точек измерения и периодичности контроля.

Вклад природных источников излучения в облучение персонала в производственных условиях контролируется и учитывается при оценке доз в тех случаях, когда он превышает 1 м3в в год.

- 223. Контроль с использованием индивидуальных дозиметров является обязательным для персонала группы А. Индивидуальный контроль за облучением персонала в зависимости от характера работ включает:
- 1) радиометрический контроль за загрязненностью кожных покровов и средств индивидуальной защиты;
- 2) контроль за характером, динамикой и уровнями поступления радиоактивных веществ в организм с использованием методов прямой и/или косвенной радиометрии;
- 3) контроль за дозами внешнего бета-, гамма- и рентгеновского излучений, а также нейтронов с использованием индивидуальных дозиметров или расчетным путем. По результатам радиационного контроля должны быть рассчитаны значения эффективных доз у персонала, а при необходимости, определены значения и эквивалентных доз облучения отдельных органов.
- 224. Контроль за радиационной обстановкой в зависимости от характера проводимых работ включает:

- 1) измерение мощности дозы рентгеновского, гамма- и нейтронного излучений, плотности потоков частиц ионизирующего излучения на рабочих местах, в смежных помещениях, на территории организации, в санитарно-защитной зоне и зоне наблюдения;
- 2) измерение уровней загрязнения радиоактивными веществами рабочих поверхностей, оборудования, транспортных средств, средств индивидуальной защиты, кожных покровов и одежды персонала;
- 3) определение объемной активности газов и аэрозолей в воздухе рабочих помещений;
- 4) измерение или оценку активности выбросов и сбросов радиоактивных в е щ е с т в ;
- 5) определение уровней радиоактивного загрязнения объектов окружающей среды в санитарно-защитной зоне и зоне наблюдения.
- 225. Система производственного радиационного контроля объектов I и II категорий включает:
- 1) непрерывный контроль на основе стационарных автоматизированных технических средств;
- 2) оперативный контроль на основе носимых и передвижных технических с р е д с т в ;
- 3) лабораторный анализ на основе стационарной лабораторной аппаратуры, средств отбора и подготовки проб для анализа. Автоматизированные системы должны обеспечивать контроль, регистрацию, отображение, сбор, обработку, хранение и выдачу информации.
- 226. В помещениях, где ведутся работы с делящимися материалами в количествах, при которых возможно возникновение самопроизвольной цепной реакции деления, а также на ядерных реакторах и критических сборках и при других работах I класса, где радиационная обстановка при проведении работ может существенно изменяться, устанавливают приборы радиационного контроля со звуковыми и световыми сигнализирующими устройствами, а персонал обеспечивается аварийными дозиметрами.
- 227. Результаты индивидуального контроля доз облучения персонала хранятся в течение пятидесяти лет. При проведении индивидуального контроля ведется учет годовых эффективной и эквивалентных доз, эффективной дозы за пять последовательных лет, а также суммарной накопленной дозы за весь период профессиональной работы. Данные индивидуальных доз облучения персонала (полугодовая и годовая) оформляются по форме № 1–ДОЗ «Сведения о дозах облучения лиц из персонала в условиях нормальной эксплуатации техногенных источников ионизирующего излучения» и формы № 2-ДОЗ «Сведения о дозах облучения лиц из персонала в условиях радиационной аварии или планируемого

повышенного облучения, а также лиц из населения, подвергшегося аварийному облучению» и предоставляться в уполномоченный орган в сфере санитарно-эпидемиологического благополучия населения согласно приложению 13 к настоящим санитарным правилам

- 228. Индивидуальная доза облучения регистрируется в журнале с последующим внесением в индивидуальную карточку, а также в машинный носитель для создания базы данных в организациях. Копия индивидуальной карточки работника в случае его перехода в другую организацию, где проводится работа с источниками излучения, должна передаваться на новое место работы; оригинал должен храниться на прежнем месте работы.
- 229. Лицам, командируемым для работ с источниками излучения, должна выдаваться заполненная копия индивидуальной карточки о полученных дозах облучения. Данные о дозах облучения прикомандированных лиц должны включаться в их индивидуальные карточки.
- 230. В организациях, проводящих работы с техногенными источниками излучения, администрацией должны устанавливаться контрольные уровни.

Перечень и числовые значения контрольных уровней определяются в соответствии с условиями работы и санитарно-эпидемиологическим з а к л ю ч е н и е м .

- 231. При установлении контрольных уровней следует исходить из принципа о п т и м и з а ц и и с у ч е т о м :
- 1) неравномерности радиационного воздействия во времени; 2) целесообразности сохранения уже достигнутого уровня радиационного воздействия на данном объекте ниже допустимого;
- 3) эффективности мероприятий по улучшению радиационной обстановки. При изменении характера работ перечень и числовые значения контрольных уровней подлежат уточнению. При установлении контрольных уровней объемной и удельной активности радионуклидов в атмосферном воздухе и в воде водоемов следует учитывать возможное поступление их по пищевым цепочкам и внешнее излучение радионуклидов, накопившихся на местности.
- 232. Результаты радиационного контроля сопоставляются со значениями пределов доз и контрольными уровнями. Превышения контрольных уровней должны анализироваться администрацией организации.

Анализ результатов производственного контроля, за радиационной безопасностью осуществляется на каждом объекте, результаты оценки ежегодно заносятся в радиационно-гигиенические паспорта организаций и территорий. Данные контроля, за радиационной безопасностью используются для оценки радиационной обстановки, установления контрольных уровней, разработки мероприятий по снижению доз облучения и оценки их эффективности, ведения

радиационно—гигиенических паспортов организаций и территорий. В зависимости от вида деятельности с ИИИ форма санитарно-гигиенического паспорта разрабатывается и утверждается администрацией организации, который согласовывается в уполномоченном органе в сфере санитарно—эпидемиологического благополучия населения.

Типовая форма радиационно-гигиенических паспортов организации (предприятия) и территории представлены в приложении 14 к настоящим с а н и т а р н ы м правилам.

О случаях превышения пределов доз для персонала, установленных ГН или квот облучения населения, администрация организации информирует уполномоченный орган в сфере санитарно-эпидемиологического благополучия населения.

12. Санитарно-эпидемиологические требования к производственному радиационному контролю объектов нефтегазового комплекса

- 233. При добыче, переработке и транспортировке нефти и газа в окружающую среду поступают природные радионуклиды семейств урана—238 (далее 238 U) и тория-232 (далее 232 Th), а также калия—40 (далее 40 K). Радионуклиды осаждаются на внутренних поверхностях оборудования (насосно—компрессорные трубы, резервуары и другие), на территории организаций и поверхностях рабочих помещений, концентрируясь в ряде случаев до уровней, при которых возможно повышенное облучение работников, населения, а также загрязнение окружающей среды.
- 234. На рабочих местах по технологическому процессу добычи и первичной переработки минерального органического сырья основными природными источниками облучения работников организаций нефтегазовой отрасли (далее НГК) в производственных условиях могут быть:
 - 1) промысловые воды, содержащие природные радионуклиды;
- 2) загрязненные природными радионуклидами территории (отдельные участки территорий) нефтегазодобывающих и перерабатывающих организаций;
- 3) отложения солей с высоким содержанием природных радионуклидов на технологическом оборудовании, на территории организаций и поверхностях р а б о ч и х п о м е щ е н и й ;
- 4) производственные отходы с повышенным содержанием природных радионуклидов;
- 5) загрязненные природными радионуклидами транспортные средства и технологическое оборудование в местах их ремонта, очистки и временного х р а н е н и я ;

- 6) технологические процессы, связанные с распылением воды с высоким содержанием природных радионуклидов;
- 7) технологические участки, в которых имеются значительные эффективные площади испарений (открытые хранилища и поля испарений, места утечек продукта и технологических вод, резервуары и хранилища продукта), и возможно интенсивное испарение отдельных фракций нефти, аэрация воды;
- 8) технологические процессы, в результате которых в воздух рабочих помещений могут интенсивно поступать изотопы радона (радон-222 и торон-220), а также образующиеся из них короткоживущие дочерние продукты распада радона и торона (далее ДПР и ДПТ);
- 9) производственная пыль с высоким содержанием природных радионуклидов в воздухе рабочей зоны;
- 10) в некоторых случаях источником внешнего облучения могут оказаться и используемые баллоны со сжиженным газом (при высоких концентрациях радона в газе источниками гамма-излучения являются дочерние продукты радона свинец-214 и висмут-214).
- 235. Суммарная эффективная доза производственного облучения работников формируется за счет внешнего облучения гамма—излучением природных радионуклидов и внутреннего облучения при ингаляционном поступлении изотопов радона и их короткоживущих дочерних продуктов и долгоживущих природных радионуклидов с производственной пылью.
- 236. Радиационная безопасность населения и работников организаций НГК обеспечивается за счет:
- 1) не превышения установленных пределов индивидуальных эффективных доз облучения работников и критических групп населения природными источниками излучения;
- 2) обоснования мероприятий по радиационной безопасности на стадии проектирования объектов НГК и учета требований по обращению с производственными отходами с повышенным содержанием природных радионуклидов в процессе деятельности организаций, а также при реабилитации территории объектов после вывода их из эксплуатации (консервации);
- 3) разработки и осуществления мероприятий по поддержанию на низком уровне индивидуальных доз облучения и численности работников организаций НГК и уровней облучения критических групп населения природными источниками излучения, а также загрязнения объектов среды обитания людей природными радионуклидами.
- 237. Индивидуальная годовая эффективная доза облучения природными источниками излучения работников НГК в производственных условиях не должна превышать 5 мЗв/год.

- 238. Среднегодовые значения радиационных факторов по пункту 230, соответствующие эффективной дозе 5 мЗв/год, при воздействии каждого из них в отдельности при продолжительности работы 2000 часов в год и средней скорости дыхания работников 1,2 метра кубических в час (далее м³/ч) составляют:
- 1) мощность эффективной дозы гамма-излучения на рабочем месте 2,5 микро Зиверта в час (далее-мкЗв/ч);
- 2) эквивалентная равновесная объемная активность (далее ЭРОА) радона в воздухе зоны дыхания 310 Беккерель на кубический метр (далее Бк/м³);
- 3) эквивалентная равновесная объемная активность торона в воздухе зоны дыхания 68 Бк/м 3
- 4) удельная активность в производственной пыли урана—238 в радиоактивном равновесии с членами своего ряда 40/f кило Беккерель на килограмм (далее кБк/кг), где f среднегодовая общая запыленность воздуха в зоне дыхания работников, миллиграмм на кубический метр (далее мг/м 3);
- 5) удельная активность в производственной пыли тория-232 в радиоактивном равновесии с членами своего ряда 27/f кБк/кг, где f среднегодовая общая запыленность воздуха в зоне дыхания работников, мг/м 3 .

При одновременном воздействии на рабочих местах нескольких радиационных факторов должно выполняться условие: сумма отношений величины воздействующих факторов к приведенным выше значениям не должна превышать

1;

- 6) при облучении работников в условиях, отличающихся от перечисленных в пункте 233 настоящих санитарных правил, среднегодовые значения радиационных факторов устанавливаются по согласованию с государственным органом санитарно-эпидемиологической службы.
- 239. Обеспечение радиационной безопасности при обращении с производственными отходами организаций нефтегазовой отрасли с повышенным содержанием природных радионуклидов осуществляется в соответствии с требованиями санитарных правил «Санитарно—эпидемиологические требование к радиационно—опасным объектам». Если по результатам первичного обследования не обнаружено повышенное облучение работников, а эффективная удельная активность природных радионуклидов в производственных отходах не превышает 1,5 кБк/кг, то дальнейший радиационный контроль не обязателен.
- 240. Эффективная доза облучения природными источниками излучения работников организаций нефтегазовой отрасли в производственных условиях не должна превышать гигиенических нормативов

При дозах облучения более 1 м3в/год работники относятся к лицам, подвергающимся повышенному производственному облучению природными

источниками излучения.

241. Требования по обеспечению радиационной безопасности на объектах нефтегазовой отрасли осуществляется в соответствии с требованиями санитарных правил «Санитарно-эпидемиологические требование к радиационно-опасным объектам».

Если облучение работников от природных радионуклидов может превышать 1 мЗв/год или в результате деятельности объекта образуются (или уже имеются) производственные отходы с эффективной удельной активностью природных радионуклидов более 1,5 кБк/кг.

- 242. Перечень организаций нефтегазовой отрасли или отдельных рабочих мест с повышенными уровнями облучения работников природными источниками, а также категория имеющихся (образующихся) в организации производственных отходов, содержащих природные радионуклиды, устанавливаются по результатам первичного радиационного обследования.
- 243. Повторное обследование проводят, если в организации произошли существенные изменения, которые могли привести к увеличению облучения работников: освоение новых горизонтов или месторождений, изменение технологии добычи, смена поставщиков (для организаций по переработке и транспортированию сырья) и другое, но не реже 1 раза в 3 года.
- 244. Если в организации не обнаружено повышенное облучение работников, но имеются или образуются производственные отходы I категории или выше, то устанавливается производственный радиационный контроль-
- 245. Если по результатам обследования обнаружено превышение дозы производственного облучения работников природными источниками 1 мЗв/год, проводится детальное обследование радиационной обстановки с целью оценки структуры доз и суммарных уровней облучения работников.
- 246. В организациях, в которых эффективные дозы производственного облучения работников составляют от 1 мЗв/год до 2 мЗв/год, радиационный контроль проводиться на рабочих местах с наибольшими уровнями облучения р а б о т н и к о в .
- 247. В организациях, в которых эффективные дозы производственного облучения работников превышают 2 мЗв/год, радиационный контроль проводится постоянно в соответствии с программой производственного радиационного контроля, а также осуществляться мероприятия по снижению о б л у ч е н и я .

При невозможности оперативного снижения уровней облучения работников ниже установленного норматива работники по условиям труда приравниваются к персоналу группы A.

248. Радиационная безопасность населения, проживающего в зоне

воздействия организаций НГК, обеспечена, если средняя годовая эффективная доза облучения критической группы населения не превышает 0,1 мЗв/год как за счет текущей деятельности организаций, так и после реабилитации территории организации по окончании ее деятельности.

- 249. При разработке программы производственного контроля необходимо провести:
- 1) первичную оценку радиационной обстановки с расчетом максимально возможных доз производственного облучения работников природными источниками излучения и наличия в организации производственных отходов;
- 2) полную оценку радиационной обстановки, включая оценку структуры доз производственного облучения работников природными источниками излучения проводят по методике оценки доз облучения работников организации НГК природными источниками согласно приложению 15 к настоящим санитарным п р а в и л а м ;
- 3) определение основных источников и путей облучения работников, а также классификации производственных отходов и установления видов и объема производственного радиационного контроля.
- 250. Производственный радиационный контроль в организациях нефтегазовой отрасли осуществляется в соответствии с требованиями санитарных правил «Санитарно-эпидемиологические требование к радиационно-опасным объектам».
- 251. Радиационный контроль для оценки уровней облучения работников и установления категории производственных отходов в организациях НГК должны о б е с п е ч и в а т ь :
- 1) определение значений $A_{\rm эфф}$ в пробах отходов производства с суммарной относительной погрешностью не более 20 %, при этом методики выполнения измерений должны обеспечивать определение численного значения $A_{\rm эфф}$ как для равновесных рядов урана и тория, так и при отсутствии радиоактивного равновесия в них, а требование, чтобы суммарная погрешность определения не превышала 20 %, обязательно для значений $A_{\rm эфф}$ более 1000 Бк/кг;
- 2) достоверное измерение мощности дозы гамма—излучения на расстоянии 0,1 м от поверхности производственных отходов и на рабочих местах на уровне 0,1 микроГрей в час (далее мкГр/ч) и выше;
- 3) измерение ЭРОА изотопов радона в воздухе с суммарной погрешностью не более 30 % при значениях выше 25 Бк/м^3 для ЭРОА радона, и выше 5 Бк/м^3 для эРОА радона, и выше 5 Бк/м^3 для эРОА торона;
 - 4) достоверное определение среднегодовой общей запыленности воздуха в

- зоне дыхания работников организаций на уровне 1 мг/м³ и выше;
- 5) определение удельной активности природных радионуклидов в производственной пыли в зоне дыхания работников для основных радионуклидов рядов урана—238 и тория—232 (таблицы 1, 2 приложения 16 к настоящим санитарным правилам).
- 252. При проведении производственного радиационного контроля с целью оценки доз производственного облучения работников природными источниками допускается осуществлять инструментальные измерения значений радиационных факторов, вклад которых в суммарные дозы превышает 20 %. Вклад неконтролируемых параметров в суммарные дозы облучения учитывается введением соответствующих коэффициентов.
- 253. Первичная сортировка (оценка класса) производственных отходов осуществляется путем измерения мощности дозы гамма-излучения в стандартных условиях с учетом массы и формы размещения отходов, расположения точек измерений. Переходный коэффициент для данных измерений определяется на основании гамма-спектрометрического анализа отходов. Окончательное установление класса производственных отходов производится по результатам гамма-спектрометрического анализа.

13. Санитарно-эпидемиологические требования к осуществлению производственного радиационного контроля металлолома

- 254. Юридические лица и физические лица, имеющие лицензию на право выполнения работ, связанных со сбором (заготовкой), хранением, переработкой и реализацией металлолома, обеспечивают производственный радиационный контроль всего поступающего в организацию металлолома.
 - 255. Производственный радиационный контроль включает:
- 1) достоверное выявление превышения уровней гамма-излучения вблизи поверхности партии металлолома над природным фоном более чем на 0,05 мкЗв/ч;
- 2) выявление всех находящихся в партии металлолома локальных источников , создающих МЭД гамма–излучения на расстоянии 10 см от поверхности партии (транспортного средства) более 0,2 мк3в/ч;
- 3) достоверное выявление, в местах проведения измерений, наличия плотности потока альфа излучения;
- 4) достоверное выявление, в местах проведения измерений, наличия плотности потока бета излучения.
 - 256. Производственный радиационный контроль проводится:
 - 1) при приемке металлолома на хранение в пунктах сбора, складах (

площадках);

- 2) при подготовке партии металлолома к реализации; 3) перед отправкой загруженных металлоломом транспортных средств
- потребителю;
 - 4) при получении металлолома потребителем;
- 5) при утилизации транспортных средств, имевших приборы, аппаратов или другого оборудования с источниками ионизирующего излучения;
- 6) при утилизации транспортных средств, если шкалы их приборов имели световой состав, содержащий радионуклиды постоянного действия;
- 7) при утилизации транспортных средств, на которых осуществлялось хранение или транспортирование радиоактивных фрагмента металлолома.
- 257. Измерение радиоактивного загрязнения партии металлолома проводится п о с л е д у ю щ и м п а р а м е т р а м :
 - 1) МЭД гамма-излучение;
 - 2) плотность потока альфа-частиц;
 - 3) плотность потока бета-частиц.
- 258. Для проведения производственного радиационного контроля используется дозиметрическая и радиометрическая аппаратура, обеспечивающая обнаружение в металлоломе радиоактивные загрязнения превышающие уровни, установленные настоящими правилами. Аппаратура производственного радиационного контроля должна иметь сертификаты Государственной поверки.
- 259. Результаты производственного радиационного контроля должны регистрироваться в специальном журнале производственного радиационного контроля металлолома согласно приложению 17 к настоящим санитарным правилами.
- 260. Производственный радиационный контроль проводится согласно методике проведения производственного радиационного контроля металлолома, указанного в приложении 18 к настоящим санитарным правилам.
- 261. Оборудование, транспортные средства и другие изделия из цветных и черных металлов перед разделкой на металлолом подвергают производственному радиационному контролю. Владелец оборудования проводит демонтаж всех приборов содержащих радиоактивные источники, а также приборов со световым составом постоянного действия.
- 262. После демонтажа приборов и оборудования проводится повторный производственный радиационный контроль.
- 263. Площадки и помещения, предназначенные для размещения металлолома, перед началом их эксплуатации подвергаются производственному радиационному контролю.

Площадки должны быть огорожены, иметь освещение, твердое покрытие и

- каналы для удаления атмосферных вод.
- 264. Партия металлолома допускается к реализации если:
- 1) МЭД гамма-излучения от поверхности лома не превышает 0,2 мкЗв/ч над естественным радиационным фоном местности:
- 2) плотность потока альфа излучения, не более 0,04 беккерель на сантиметр квадратный (далее Бк/см²);
 - 3) плотность потока бета излучения, не более $0.4~{\rm K}/{\rm cm}^{-2}$
- 265. Юридические лица принимают меры к ограничению доступа посторонних лиц в зону с уровнем гамма-излучения более 0,2 мкЗв/ч над природным фоном.
- 266. При обнаружении радиоактивного загрязнения металлолома, юридические лица немедленно прекращает дальнейшие работы и информирует государственный орган в сфере санитарно-эпидемиологического благополучия населения на соответствующей территории в течение 24 часов.
- 267. При выявлении радиационного загрязнения на отдельных участках партии металлолома, производственный радиационный контроль должен в к л ю ч а т ь :
- 1) полное обследование всей партии металлолома с целью обнаружения всех локальных источников гамма-излучения;
- 2) проведение измерений МЭД гамма-излучения на поверхности партии м е т а л л о л о м а ;
- 3) обязательную и полную проверку наличия поверхностного загрязнения металлолома альфа и бета активными радионуклидами;
- 4) определение наличия гамма–излучения содержащихся в металлоломе радионуклидов с доверительным значением нижней границы определения МЭД гамма-излучения (над естественным радиационным фоном) не более 0,05 мкЗв/ч;
- 5) достоверное выявление, в местах проведения измерений, наличия плотности потока альфа излучения, превышающей 0,04 Бк/см²;
- 6) достоверное выявление, в местах проведения измерений, наличия плотности потока бета излучения, превышающей 0,4 Бк/см 2 .
- 268. Все обнаруженные в металлоломе локальные источники должны быть из него удалены и утилизироваться.
- 269. Извлечение радиоактивного источника из металлолома производят специально подготовленные сотрудники.
- 270. Извлеченные из партии металлолома локальные источники помещают для временного хранения в металлические контейнеры, расположенные в специально предназначенных помещениях, обеспечивающих их сохранность и исключающих возможность несанкционированного доступа к ним посторонних

лиц. МЭД гамма–излучения (за вычетом природного фона) на внешней поверхности стен помещения, в котором размещается контейнер с извлеченными локальными источниками, не должна превышать 0,1 мкЗв/ч.

14. Санитарно-эпидемиологические требования к применению средств индивидуальной защиты и личной гигиены

- 271. Все работающие с источниками излучения или посещающие участки, где производятся такие работы, обеспечиваются средствами индивидуальной защиты в соответствии с видом и классом работ.
- 272. При работах с радиоактивными веществами в открытом виде I класса и при отдельных работах II класса персонал должен иметь комплект основных средств индивидуальной защиты, а также дополнительные средства защиты в зависимости от уровня и характера возможного радиоактивного загрязнения.

Основной комплект средств индивидуальной защиты включает: специальное белье и обувь, носки, комбинезон или костюм (куртка, брюки), шапочку или шлем, перчатки, полотенца и носовые платки одноразовые, средства защиты органов дыхания (в зависимости от загрязнения воздуха). При работах II класса и при отдельных работах III класса персонал должен быть обеспечен халатами, шапочками, перчатками, легкой обувью и при необходимости средствами защиты органов дыхания.

- 273. Средства индивидуальной защиты для работ с радиоактивными веществами должны изготовляться из хорошо дезактивируемых материалов, л и б о б ы т ь о д н о р а з о в ы м и .
- 274. Работающие с радиоактивными растворами и порошками, а также персонал, проводящий уборку помещений, в которых ведутся работы с радиоактивными веществами, кроме комплекта основных средств индивидуальной защиты, должны иметь дополнительно спецодежду из пленочных материалов или материалов с полимерным покрытием: фартуки, нарукавники, куртки, брюки, резиновую или пластиковую специальную обувь.
- 275. Персонал, выполняющий работы по сварке или резке металла, загрязненного радионуклидами, снабжается специальными средствами индивидуальной защиты из искростойких, хорошо дезактивируемых материалов.
- 276. Средства защиты органов дыхания (фильтрующие или изолирующие) необходимо применять при работах в условиях возможного аэрозольного загрязнения воздуха помещений радиоактивными веществами (работа с порошками, выпаривание радиоактивных растворов).
- 277. При работах, когда возможно загрязнение воздуха помещения радиоактивными газами или парами (ликвидация аварий, ремонтные работы),

или когда применение фильтрующих средств не обеспечивает радиационную безопасность, следует применять изолирующие защитные средства (пневмокостюмы, пневмошлемы, а в отдельных случаях — автономные и з о л и р у ю щ и е а п п а р а т ы).

- 278. На радиационных объектах, где имеется вероятность радиоактивного загрязнения кожных покровов, используются в качестве средств дезактивации м о ю щ и е с р е д с т в а .
- 279. При переходах из помещений для работ более высокого класса в помещения для работ более низкого класса контролируются уровни радиоактивного загрязнения средств индивидуальной защиты. При переходе из второй в третью зону дополнительные средства индивидуальной защиты с н и м а ю т с я .
- 280. Спецодежду и белье, загрязненные выше допустимых уровней направляют на дезактивацию в специальную прачечную. Смена основной спецодежды и белья осуществляется персоналом не реже одного раза в семь дней .

Дополнительные средства индивидуальной защиты (пленочные, резиновые, с полимерным покрытием) после каждого использования подвергают предварительной дезактивации в санитарном шлюзе или в другом специально отведенном месте. Если после дезактивации их остаточное загрязнение превышает допустимый уровень, дополнительные средства индивидуальной защиты направляют на дезактивацию в специальную прачечную.

- 281. В случае обнаружения загрязнения личная одежда и обувь подлежит дезактивации под контролем службы радиационной безопасности, а при невозможности ее очистки захоронению.
- 282. В помещениях для работы с радиоактивными веществами в открытом в и д е д о п у с к а е т с я :
- 1) пребывание сотрудников без необходимых средств индивидуальной з а щ и т ы ;
 - 2) прием пищи, курение, пользование косметическими принадлежностями;
- 3) хранение пищевых продуктов, табачных изделий, домашней одежды, косметических принадлежностей и других предметов, не имеющих отношения к р а б о т е .
- 283. Для приема пищи предусматривается специальное помещение, оборудованное умывальником для мытья рук с подводкой горячей воды, изолированное от помещений, где ведутся работы с применением радиоактивных в е щ е с т в в о т к р ы т о м в и д е .
- 284. При выходе из помещений, где проводились работы с радиоактивными веществами, проводиться контроль радиоактивного загрязнение спецодежды и

других средств индивидуальной защиты, при выявлении радиоактивного загрязнения спецодежда и средства индивидуальной защиты направляются на дезактивацию, работник моется под душем.

15. Санитарно-эпидемиологические требования к обеспечению радиационной безопасности пациентов и населения при медицинском облучении

- 285. Радиационная безопасность пациентов и населения должна быть обеспечена при всех видах медицинского облучения (профилактического, диагностического, лечебного, исследовательского) путем достижения максимальной пользы от рентгенорадиологических процедур и минимизации радиационного ущерба.
- 286. Медицинское облучение пациентов с целью получения диагностической информации или терапевтического эффекта проводится по назначению врача и с согласия пациента. Окончательное решение о проведении соответствующей процедуры принимает врач—рентгенолог или врач—радиолог.
- 287. Медицинское диагностическое облучение осуществляется по медицинским показаниям в тех случаях, когда отсутствуют или нельзя применить, или недостаточно информативны другие альтернативные методы д и а г н о с т и к и .
- 288. Методики лучевой диагностики и терапии утверждаются уполномоченным органом в области здравоохранения, в которых должны отражаться оптимальные режимы выполнения процедур и допустимые уровни облучения пациента.
- 289. Регламенты проведения всех видов рентгенорадиологических диагностических исследований должны гарантировать отсутствие детерминированных лучевых эффектов.
- 290. Облучение людей с целью получения научной медицинской информации осуществляется при обязательном письменном согласии обследуемых после представления им сведений о возможных последствиях облучения.
- 291. При проведении лучевой терапии учитывается расположение патологического очага с целью снижения риска лучевых осложнений.
- 292. Для рентгенорадиологических медицинских исследований и лучевой терапии используется аппаратура, включенная в государственный реестр лекарственных средств, изделий медицинского назначения и медицинской техники и имеющая санитарно—эпидемиологическое заключение на право ее э к с п л у а т а ц и и .
 - 293. Отделения (подразделения) лучевой терапии и диагностики должны

использовать при выполнении лечебно-диагностических процедур передвижных и индивидуальных средств радиационной защиты пациента и персонала.

- 294. Использование в практике фармакологических радиопротекторов допускается при наличии санитарно—эпидемиологического заключения.
- 295. Медицинская организация должна иметь лицензию на право выполнения рентгенорадиологических процедур (диагностические и лечебные).
- 296. Медицинский персонал, занимающийся рентгенорадиологической диагностикой и терапией, осуществляет защиту пациентов, поддерживая на возможном низком уровне дозы облучения.
- 297. Дозы облучения пациента от проведения каждого рентгенорадиологического исследования и процедур лучевой терапии должны вноситься в персональный лист учета доз медицинского облучения, являющийся обязательным приложением к его амбулаторной карте
- 298. При достижении накопленной дозы медицинского диагностического облучения пациента 0,5 Зв принимаются меры по дальнейшему ограничению его облучения, если лучевые процедуры не диктуются жизненными показаниями.
- 299. По требованию пациента ему предоставляется информация об ожидаемой или полученной дозе облучения и о возможных последствиях от проведения рентгенорадиологических процедур.
- 300. Медицинскому персоналу не допускается увеличивать облучение пациента в целях сокращения собственного профессионального облучения.
- 301. При введении пациенту радиофармацевтического препарата с терапевтической целью врач должен рекомендовать ему временное воздержание от воспроизводства потомства.
- 302. Введение радиофармацевтических средств с целью диагностики и терапии беременным женщинам не допускается.
- 303. При введении с целью диагностики или терапии радиофармацевтических препаратов кормящим матерям кормление ребенка грудью временно приостанавливается.

16. Санитарно-эпидемиологические требования к обеспечению радиационной безопасности при воздействии природных источников излучения

304. Требования по обеспечению радиационной безопасности при воздействии природных источников излучения в производственных условиях предъявляются к любым организациям, в которых облучение работников от природных радионуклидов превышает 1 мЗв/год (организации, осуществляющие работы в подземных условиях, добывающие и перерабатывающие минеральное и

органическое сырье с повышенным содержанием природных радионуклидов). В проектной документации не урановых рудников и других подземных сооружений должны быть отражены вопросы радиационной безопасности.

Организации, добывающие и перерабатывающие руды с целью извлечения из них природных радионуклидов (урана, радия, тория), а также организации, использующие эти радионуклиды, относятся к организациям, проводящим работы с техногенными источниками.

- 305. Для строительства зданий производственного назначения выбирают участки территории, где плотность потока радона с поверхности грунта не превышает 250 миллибеккерель на квадратный метр в секунду (далее мБк/(м 2* с). При проектировании строительства здания на участке с плотностью потока радона с поверхности грунта более 250 мБк/(м 2* с) в проекте здания предусматривается система защиты от радона.
- 306. В организациях, где не проводятся работы с техногенными источниками излучения, уровни природного облучения работников в производственных условиях не должны превышать значений, приведенных в ГН. При изменении продолжительности работы, нарушении радиоактивного равновесия природных радионуклидов производственной пыли, определяющих В воздействия, администрация организации устанавливает радиационного радиационного воздействия, контрольные уровни на основании санитарно-эпидемиологического заключения.
- 307. Для составления перечня действующих организаций, цехов или отдельных рабочих мест, на которых должен осуществляться контроль радиационной обстановки, обусловленной природными источниками излучения, проводиться их первичное обследование.
- 308. Если в результате обследования в организации не обнаружено случаев превышения дозы облучения работников более 1 м3в/год, то дальнейший радиационный контроль в ней не является обязательным. Однако при существенном изменении технологии производства, которые могут привести к увеличению облучения работников, проводится повторное обследование.
- 309. В организациях, в которых установлено превышение дозы 1 мЗв/год, но нет превышения дозы в 2 мЗв/год, проводится выборочный радиационный контроль рабочих мест с наибольшими уровнями облучения работников.
- 310. В организациях, в которых дозы облучения работников превышают 2 мЗв/год, осуществляется постоянный контроль доз облучения и проводятся мероприятия по их снижению.
- 311. В случае обнаружения превышения установленного норматива (5 мЗв/год) администрация организации принимает меры по снижению облучения

работников. При невозможности соблюдения указанного норматива в организациях, допускается приравнивание соответствующих работников по условиям труда к персоналу, работающему с техногенными источниками излучения. О принятом решении администрация организации информирует органы государственного санитарно—эпидемиологического надзора. На лиц, приравненных по условиям труда к персоналу, работающему с техногенными источниками излучения, распространяются все требования по обеспечению радиационной безопасности, установленные для персонала группы А.

- 312. В организациях, в которых отходы производства по критериям, приведенным в разделе «Санитарно–эпидемиологические требования к сбору, использованию и захоронению радиоактивных отходов» настоящих санитарных правил, относятся к категории радиоактивных, должен быть организован их сбор, временное хранение и захоронение.
- 313. Требования по обеспечению радиационной безопасности населения распространяются на регулируемые природные источники излучения: изотопы радона и продукты их распада в воздухе помещений, гамма-излучение природных радионуклидов, содержащихся в строительных изделиях, природные радионуклиды в питьевой воде, удобрениях и полезных ископаемых.
- 314. Относительную степень радиационной безопасности населения характеризуют следующие значения эффективных доз от природных источников излучения: менее 2 мЗв/год облучение не превышает средних значений доз для населения страны от природных источников излучения; от 2 до 5 мЗв/год повышенное облучение; более 5 мЗв/год высокое облучение. Мероприятия по снижению высоких уровней облучения должны осуществляться в первоочередном порядке.
- 315. При выборе участков территорий под строительство жилых домов и зданий социально–бытового назначения отводятся участки с гамма–фоном, не превышающим 0,3 мк3в/ч и плотностью потока радона с поверхности грунта не б о л е е 8 0 м Б к / (м 2 * с)
- 316. При отводе для строительства здания участка с плотностью потока радона более $80 \text{ мБк/(м}^{2*} \text{ c})$ в проекте здания должна быть предусмотрена система защиты от радона (монолитная бетонная подушка, улучшенная изоляция перекрытия подвального помещения). Необходимость радонозащитных мероприятий при плотности потока радона с поверхности грунта менее $80 \text{ мБк/(м}^{2*} \text{ c})$ определяется в каждом отдельном случае на основании санитарно-эпидемиологического
- 317. Производственный радиационный контроль должен осуществляться на всех стадиях строительства, реконструкции, капитального ремонта и

эксплуатации жилых домов и зданий социально-бытового назначения. В случаях обнаружения превышения нормативных значений, проводится анализ связанных с этим причин и осуществляются защитные мероприятия, направленные на снижение мощности дозы гамма-излучения и (или) содержания радона в воздухе помещений. До снижения мощности дозы гамма-излучения и объемной активности радона в воздухе помещений строящегося, реконструируемого или капитально ремонтируемого здания до нормативных значений, санитарно-эпидемиологическое заключение на право эксплуатации объекта не в ы д а е т с я .

- 318. Производственный радиационный контроль жилых домов и зданий социально—бытового назначения осуществляют организации, аккредитованные в установленном законодательством порядке.
- 319. Государственный надзор за выполнением требований настоящих санитарных правил по обеспечению радиационной безопасности в жилых и общественных зданиях при их строительстве, реконструкции, вводе в эксплуатацию и при эксплуатации осуществляют государственные органы в сфере санитарноэ—пидемиологического благополучие населения.
- 320. Контроль за содержанием природных радионуклидов в строительных материалах и изделиях осуществляет организация—производитель. Значения удельной активности природных радионуклидов и класс опасности должны указываться в сопроводительной документации на каждую партию материалов и и з д е л и й .
- 321. Значения удельной активности природных радионуклидов в фосфорных удобрениях и мелиорантах должны указываться поставщиками в сопроводительном документе, копию которого организация—получатель передает в органы государственного санитарно-эпидемиологического надзора.

17. Санитарно-эпидемиологические требования к обеспечению радиационной безопасности при радиационных авариях

322. Система радиационной безопасности персонала и населения при радиационной аварии должна обеспечивать сведение к минимуму негативных последствий аварии, предотвращение возникновения детерминированных эффектов и минимизацию вероятности стохастических эффектов. При обнаружении радиационной аварии должны быть предприняты срочные меры по прекращению развития аварии, восстановлению контроля над источником излучения и сведения к минимуму доз облучения и количества облученных лиц из персонала и населения, радиоактивного загрязнения производственных помещений и окружающей среды, экономических и социальных потерь,

вызванных аварией.

323. В проектной документации каждого радиационного объекта должны быть определены возможные аварии, возникающие вследствие неисправности оборудования, неправильных действий персонала, стихийных бедствий или иных причин, которые могут привести к потере контроля над источниками излучения и облучению людей и (или) радиоактивному загрязнению окружающей среды.

- 324. В проектной документации радиационных объектов I-II категорий должны быть разделы:
- 1) «Инженерно-технические мероприятия гражданской обороны. Мероприятия по предупреждению чрезвычайных ситуаций», включающий план ликвидации аварий, наличие специализированной аварийной бригады, номенклатуру, объем и места хранения средств индивидуальной защиты, медикаментов, аварийного запаса радиометрических и дозиметрических приборов, средств дезактивации и санитарной обработки, инструментов и инвентаря, необходимых для проведения неотложных работ по ликвидации последствий радиационной аварии;
- 2) «План мероприятий по защите персонала и населения от радиационной а в а р и и и е е последствий».
- 325. План мероприятий по защите персонала и населения от радиационной аварии и ее последствий содержит следующие основные разделы:
- 1) прогноз возможных аварий на радиационном объекте с учетом вероятных причин, типов и сценариев развития аварии, а также прогнозируемой радиационной обстановки при авариях разного типа;
 - 2) критерии для принятия решений о проведении защитных мероприятий;
- 3) перечень организаций, с которыми осуществляется взаимодействие при ликвидации аварии и ее последствий;
 - 4) организация аварийного радиационного контроля;
 - 5) оценка характера и размеров радиационной аварии;
 - 6) порядок введения аварийного плана в действие;
 - 7) порядок оповещения и информирования;
 - 8) поведение персонала при аварии;
- 9) принимаемые действия должностными лицами при проведении аварийных р а б о т ;
 - 10) меры защиты персонала при проведении аварийных работ; 11) противопожарные мероприятия;
 - 12) мероприятия по защите населения и окружающей среды;
 - 13) оказание медицинской помощи пострадавшим;
- 14) меры по локализации и ликвидации очагов (участков) радиоактивного з а г р я з н е н и я ;

- 15) подготовка и тренировка персонала к действиям в случае аварии. 326. На всех радиационных объектах должна быть «Инструкция по действиям персонала в аварийных ситуациях».
- 327. На производственных участках, в санитарном пропускнике и медицинском пункте радиационного объекта должны находиться аптечки с набором необходимых средств первой помощи пострадавшим при аварии, а на объектах, где проводится работа с радиоактивными веществами в открытом виде, и восполняемый запас средств санитарной обработки лиц, подвергшихся з а г р я з н е н и ю .
- 328. В каждой организации, в которой возможна радиационная авария, предусматривается система экстренного оповещения о возникшей аварии, по сигналам которой персонал должен действовать в соответствии с планом мероприятий по ликвидации радиационной аварии и должностными и н с т р у к ц и я м и .
- 329. Во всех случаях установления факта радиационной аварии администрация организации информирует государственные органы, уполномоченные осуществлять государственное управление, надзор и контроль в области обеспечения радиационной безопасности.
- 330. Государственные органы в области обеспечения радиационной безопасности в соответствии с «Планом мероприятий по защите населения в случае радиационной аварии» обеспечивают быстрое поступление данных о радиационной аварии специалистам в области радиационной защиты и их участие в информации населения о радиационной аварии, рекомендуемых способах и средствах защиты.
- 331. К проведению работ по ликвидации аварии и ее последствий должны привлекаться, прежде всего, члены специализированных аварийных бригад. При необходимости для выполнения этих работ могут быть привлечены лица предпочтительно из персонала старше тридцати лет, не имеющие медицинских противопоказаний, при их добровольном письменном согласии после информирования о возможных дозах облучения и риске для здоровья. Женщины могут быть допущены к участию в аварийных работах лишь в исключительных с л у ч а я х .
- 332. Перед началом работ по ликвидации последствий аварии проводится инструктаж персонала по вопросам радиационной безопасности с разъяснением характера и последовательности работ. При необходимости следует проводить предварительную отработку предстоящих операций.
- 333. Работы по ликвидации последствий аварии и выполнение других мероприятий, связанных с возможным переоблучением персонала, должны проводиться под радиационным контролем по специальному разрешению (

- допуску), в котором определяются предельная продолжительность работы, дополнительные средства защиты, фамилии участников и лица, ответственного з а выполнение работ.
- 334. Регламентация планируемого повышенного облучения персонала при ликвидации аварии определяется ГН. Планируемое повышенное облучение допускается для персонала радиационного объекта, участвующего в проведении аварийно–восстановительных работ, и специалистов аварийно-спасательных с л у ж б и ф о р м и р о в а н и й.
- 335. Порядок радиационного контроля определяется с учетом особенностей и условий выполняемых работ в соответствии с санитарно—эпидемиологическим з а к л ю ч е н и е м .
- 336. Людей с травматическими повреждениями, химическими отравлениями или подвергшихся облучению в дозе выше 0,2 Зв необходимо направить на медицинское обследование. При радиоактивном загрязнении должна проводиться санитарная обработка людей и дезактивация загрязненной одежды.
- 337. При радиационной аварии с выбросом радионуклидов в окружающую среду, повлекшим за собой радиоактивное загрязнение обширных территорий, защита населения осуществляется в соответствии с критериями для принятия решений, приведенными в ГН.
- 338. Ликвидация последствий аварии и расследование ее причин, при необходимости, проводится на региональном, территориальном и объектовом уровнях в порядке, установленном законодательством Республики Казахстан.
- 339. Государственные органы санитарно—эпидемиологической службы должны принимать участие в выполнении следующих задач при расследовании и ликвидации последствий радиационной аварии:
 - 1) выявление лиц, которые могли подвергнуться аварийному облучению;
- 2) контроль за обеспечением радиационной безопасности лиц, принимающих участие в расследовании и ликвидации аварии;
- 3) контроль за уровнями радиоактивного загрязнения производственной и окружающей среды, источников водоснабжения, продуктов питания:
- 4) гигиеническая оценка радиационной обстановки и индивидуальных доз облучения персонала и отдельных групп населения, а также лиц, принимавших участие в аварийных работах;
 - 5) оценка эффективности дезактивации и санитарной обработки;
- 6) разработка предложений для центральных исполнительных органов и организаций по защите персонала и населения с прогнозом радиационной о б с т а н о в к и ;
 - 7) контроль за сбором, удалением и захоронением радиоактивных отходов. 340. Регламентация особых режимов проживания населения в зонах

радиоактивного загрязнения, контроль за радиационной обстановкой на соответствующей территории, учета доз облучения населения осуществляется в соответствии с санитарно-эпидемиологическим заключением.

- 341. На территориях, подвергшихся радиоактивному загрязнению в результате радиационной аварии, осуществляется:
- 1) радиационный контроль с оценкой доз облучения населения за счет радиоактивного загрязнения территории, если эта доза может превысить 10 мкЗв/г о д ;
- 2) радиационный контроль за другими основными видами облучения н а с е л е н и я ;
- 3) оптимизированное снижение доз по всем основным видам облучения, если доза облучения населения за счет радиоактивного загрязнения территории превышает 1,0 м 3 в / год;
- 4) оптимизированные защитные мероприятия, не нарушающие нормальную жизнедеятельность населения, хозяйственное и социальное функционирование территории, если доза облучения за счет радиоактивного загрязнения территории превышает 0,1 м3в/год, но не более 1,0 м3в/год.
- 342. Администрация организации, осуществляющей хозяйственную деятельность на территории, подвергшейся радиоактивному загрязнению, обеспечивает условия работы, при которых облучение работников за счет радиоактивного загрязнения не превысит 5 мЗв/год. В организациях, где облучение работников за счет аварийного загрязнения превышает 1 мЗв/год, должна быть создана служба радиационной безопасности, которая осуществляет радиационный контроль и проводит мероприятия по снижению доз облучения работников в соответствии с принципом оптимизации. Порядок радиационного контроля устанавливается в соответствии с санитарно—эпидемиологическим з а к л ю ч е н и е м .
- 343. Медицинская организация, обслуживающая организацию, где проводятся работы с источниками излучения, на случай аварийного облучения о б о р у д у е т с я :
 - 1) приборами радиационного контроля;
- 2) средствами дезактивации кожных покровов, ожогов и ран (при работах с радиоактивными веществами в открытом виде);
 - 3) средствами ускорения выведения радионуклидов из организма; 4) радиопротекторами.
- 344. Периодическое медицинское обследование лиц из персонала группы А после прекращения ими работы с источниками излучения проводится в той же медицинской организации, что и во время указанных работ, или в другой медицинской организации ведомства, в котором он работал с источниками

излучения.

345. Медицинское обследование лиц из населения, подвергшихся за год облучению в эффективной дозе более 200 мЗв или с накопленной дозой более 500 мЗв от одного из основных источников облучения, или 1000 мЗв от всех источников облучения, организуется территориальным управлением здравоохранения

Приложение 1 к санитарным правилам «Санитарно-эпидемиологические требования к обеспечению радиационной безопасности»

Взвешивающие коэффициенты для отдельных видов излучения при расчете эквивалентной дозы (W_R)

Таблица 1

№ π/π	Взвешивающие коэффициенты для отдельных видов излучения (W_R)	Множители поглощенной дозы, учитывающие относительную эффективность различных видов излучения
1	2	3
1	Фотоны любых энергий	1
2	Электроны и мюоны любых энергий	1
3	Нейтроны с энергией менее 10 килоэлектронвольт (далее - кэВ)	5
4	Нейтроны с энергией от 10 кэВ до 100 кэВ	10
5	Нейтроны с энергией от 100 кэВ до 2 мегаэлектронвольт (далее – МэВ)	20
6	Нейтроны с энергией от 2 МэВ до 20 МэВ	10
7	Нейтроны с энергией более 20 МэВ	5
8	Протоны с энергией более 2 МэВ, кроме протонов отдачи	5
9	Альфа частицы, осколки деления, тяжелые ядра	20

Все значения относятся к излучению, падающему на тело, а в случае внутреннего облучения - испускаемому при ядерном превращении;

Взвешивающие коэффициенты для тканей и органов для расчета эффективной дозы (W_T)

Таблица 2

Nº	Взвешивающие коэффициенты для тканей и органов для расчета эффективной дозы (W_T)	Множители эквивалентной дозы в органах и тканях
1	2	3
1	Гонады	0,08
2	Костный мозг (красный)	0,12
3	Толстый кишечник	0,12
4	Легкие	0,12
5	Желудок	0,12
6	Мочевой пузырь	0,05
7	Грудная железа	0,12
8	Печень	0,05
9	Пищевод	0,05
10	Щитовидная железа	0,05
11	Кожа	0,01
12	Клетки костных поверхностей	0,01
13	Остальное (надпочечники, головной мозг, экстраторокальный отдел органов дыхания, тонкий кишечник, почки, мышечная ткань, поджелудочная железа, селезенка, вилочковая железа и матка	0,12

В случаях, когда один из перечисленных органов или тканей получает эквивалентную дозу, превышающую самую большую дозу, полученную любым из двенадцати органов или тканей, для которых определены взвешивающие коэффициенты, следует приписать этому органу или ткани взвешивающий коэффициент, равный 0,025, а оставшимся органам или тканям из рубрики «Остальное» приписать суммарный коэффициент, равный 0,025.

Приложение 2 к санитарным правилам «Санитарно-эпидемиологические требования к обеспечению радиационной безопасности»

Основные принципы радиационной безопасности

1. Принцип обоснования

1. В наиболее простых ситуациях проверка принципа обоснования осуществляется путем сравнения пользы и вреда:

$$X - (Y_1 + Y_2) \ge 0, \tag{1}$$

где X - польза от применения источника излучения или условий облучения, за вычетом всех затрат на создание и эксплуатацию источника излучения или

условий облучения, кроме затрат на радиационную защиту; У₁ - затраты на все меры защиты;

У₂ - вред, наносимый здоровью людей и окружающей среде от облучения, не устраненного защитными мерами.

2. Разница между пользой (X) и суммой вреда ($Y_1 + Y_2$) должна быть больше нуля, а при наличии альтернативных способов достижения пользы (X) эта разница должна быть еще и максимальной. В случае, когда невозможно достичь превышения пользы над вредом, принимается решение о неприемлемости использования данного вида источника излучения.

Должны учитываться аспекты технической и экологической безопасности.

- 3. Проверка соблюдения принципа обоснования, связанная с взвешиванием пользы и вреда от источника излучения, когда чаще всего польза и вред измеряются через различные показатели, не ограничивается только радиологическими критериями, а включает социальные, экономические, психологические и другие факторы.
- 4. Для различных источников излучения и условий облучения конкретные величины пользы имеют свои особенности (произведенная энергия от атомной электрической станции (АЭС), диагностическая и другая информация, добытые природные ресурсы, обеспеченность жилищем). Их следует свести к обобщенному выражению пользы для сопоставления с возможным ущербом от облучения за одинаковые отрезки времени в виде сокращения числа человека-лет жизни. При этом принимается, что облучение в коллективной эффективной дозе одного чел.-Зв приводит к потере одного человека года жизни.
- 5. Приоритет отдается показателям здоровья по сравнению с экономическими выгодами. Медико-социальное обоснование соотношения польза-вред может быть сделано на основе количественных и качественных показателей пользы и вреда для здоровья от деятельности, связанной с облучением.
 - 6. Для количественной оценки следует использовать неравенство:

$$y \ 0 > y \ 2 ,$$
 (2)

где У2 имеет то же значение, что и в формуле (1), У0 - вред для здоровья в результате отказа от данного вида деятельности, с в я з а н н о й с облучением.

Качественная оценка может быть выполнена с помощью формулы:

$$\sum \left(\frac{Z}{D_z} - \frac{Z_0}{D_{z_0}}\right) < 0, \tag{3}$$

где Z - интенсивность воздействия вредных факторов в результате деятельности, связанной с облучением; Z_0 - вредные факторы, воздействующие на персонал или население при отказе от деятельности, связанной с облучением; D_z и DZ_0 - допустимая интенсивность воздействия факторов Z и Z_0 .

2. Принцип оптимизации

- 7. Реализация принципа оптимизации должна осуществляться каждый раз, когда планируется проведение защитных мероприятий. Ответственным за реализацию этого принципа является служба или лица, ответственные за организацию радиационной безопасности на объектах или территориях, где возникает необходимость в радиационной защите.
- 8. В условиях нормальной эксплуатации источника излучения или условий облучения оптимизация (совершенствование защиты) должна осуществляться при уровнях облучения в диапазоне от соответствующих пределов доз до достижения пренебрежимо малого уровня 10 мкЗв в год индивидуальной дозы.
- 9. Реализация принципа оптимизации, как и принципа обоснования, должна осуществляться по специальным методическим указаниям, утверждаемым области санитарно-эпидемиологического уполномоченным органом В населения, ДО ИХ издания - путем благополучии a проведения радиационно-гигиенической экспертизы обосновывающих документов. При этом согласно ГН минимальным расходом на совершенствование защиты, снижающей эффективную дозу на одного человеко-зиверт, считается расход, равный одному годовому душевому национальному доходу (величина альфа, принятая в международных рекомендациях).

Приложение 3 к санитарным правилам «Санитарно-эпидемиологические требования к обеспечению радиационной безопасности»

Рекомендации по установлению квот на облучение населения от отдельных техногенных источников излучения

1. Целью установления квот является недопущение превышения предела дозы техногенного облучения населения (1 м3в/год), установленного Г \underline{H} для населения, подвергающегося облучению от нескольких радиационных объектов, и снижение облучения населения от техногенных источников в соответствии с

принципом оптимизации.

2. В проектной документации радиационных объектов I категории должны быть определены квоты на облучение населения при нормальной работе объекта. Числовые значения квот устанавливаются на основании санитарно-эпидемиологического заключения.

- 3. Квоты устанавливаются для величин средней индивидуальной эффективной дозы облучения критических групп населения, проживающих в зоне наблюдения объекта.
- 4. Квоты устанавливаются для всех радиационных факторов (воздушных выбросов, водных сбросов), от которых облучение критической группы населения за пределами санитарно-защитной зоны (далее СЗЗ) радиационного объекта при его нормальной эксплуатации может превысить минимально значимую величину 10 мкЗв/год.
- 5. Размер квоты должен характеризовать верхнюю границу возможного уровня облучения критических групп населения за счет нормальной эксплуатации источников излучения на радиационном объекте с учетом достигнутого уровня обеспечения радиационной безопасности населения.
- 6. Сумма квот от различных источников излучения не должна превышать предела дозы облучения населения, установленного ГН. Разность между пределом дозы для населения и суммой квот должна рассматриваться как резерв, величина которого характеризует степень радиационной безопасности населения от техногенных источников излучения.
- 7. Значения квот используются для расчета допустимых уровней отдельных радиационных факторов (мощности дозы излучения на границе санитарно-защитной зоны, мощности выбросов и сбросов, содержания радионуклидов в объектах окружающей среды).

Требования, предъявляемые к ЯРЭУ различных категорий потенциальной опасности при проектировании и эксплуатации

_			1
 വവ	пи	TTO	
 <i>a</i> u		114	

Троборомуя СОТОВГ	Категория ЯРЭУ						
Требования СЭТОРБ	Ι	II	III	IV			
1	2	3	4	5			
Выбор площадки размещения ЯРЭУ	В соответствии с законодательством		Требования отсутствуют	Требования отсутствуют			
	Подлежит согласова в сфере эпидемиологичесь	санитарно-		С 3 3 н е предусмотрена			
Наличие СЗЗ							

	благополучия насел ограничиваться площадки ЯРЭУ		Ограничивается пределами площадки ЯРЭУ	
Наличие зоны наблюдения (ЗН)	Необходима 3H. согласованию с орга санитарно-эпидемиоло благополучия населени	огического	3 Н не требуется	Не предусмотрена
Воздействие на население при нормальной эксплуатации ЯРЭУ	Ограничено квотой на облучение	Нет воздействия	Нет воздействия	Не предусмотрена
	план на этапе план на п		Предварительный план на этапе проектирования	Не предусмотрен
Наличие плана мероприятий по защите населения в случае радиационной аварии	Требуется	Требуется	Не требуется	H е регламентируется
Наличие в проекте раздела защита от внешних воздействий	Требуется	Требуется	Не требуется	Не требуется
Использование стационарных автоматизированных средств непрерывного контроля радиационной обстановки	Требуется	Требуется	Не требуется	Не требуется
Классификация систем и оборудования	Требуется	Требуется	Требуется	Не требуется
Наличие технологического регламента эксплуатации	Требуется	Требуется	Инструкция по эксплуатации	Инструкция по эксплуатации
Наличие отчета по анализу безопасности ЯРЭУ	Требуется	Требуется	_	Инструкция по радиационной безопасности

Приложение 4

к санитарным правилам «Санитарно-эпидемиологические требования к обеспечению радиационной безопасности»

Мощность эквивалентной дозы, используемая при проектировании защиты от внешнего ионизирующего излучения

Таблица 1

Категория облучаемых лиц		Назначение помещений и территорий	Продолжительность облучения, ч/год	Проектная мощность эквивалентной дозы, мкЗв/ч
1	1		3	4
		Помещения постоянного пребывания персонала	1700	6,0
Персонал	Группа А	Помещения временного пребывания персонала	850	12
Группа Б	Помещения организации и территория санитарно-защитной зоны, где находится персонал группы Б	2000	1,2	
Население		Любые другие помещения и территории	8800	0,03

Допустимые уровни радиоактивного загрязнения поверхности транспортных средств, в частицах на квадратный сантиметр в минуту (далее - част/(см²* мин)

Таблица 2

	Вид загрязнения					
Объект загрязнения	Снимаемое (нефи	ксированное)	Неснимаемое (фиксированное)			
Оовект загрязнения	Альфа-активные Бета-активные радионуклиды		Альфа-активные радионуклиды	Бета-активные радионуклиды		
1	2	3	4	5		
Наружная поверхность охранной тары контейнера	Не допускается	Не допускается	Н е регламентируется	200		
Наружная поверхность вагона-контейнера	Не допускается	Не допускается	Н е регламентируется	200		
Внутренняя поверхность охранной тары контейнера		100	H е регламентируется	2000		
Наружная поверхность транспортного контейнера	1,0	100	H е регламентируется	2000		

Класс работ с открытыми источниками излучения

Таблица 3

Класс работ	Суммарная активность на рабочем месте, приведенная к группе A, Бк
1	2
І класс	более 10 ⁸
ІІ класс	от 10^5 до 10^8
III класс	от 10^3 до 10^5

- 1. При простых операциях с жидкостями (без упаривания, перегонки, барботажа) допускается увеличение активности на рабочем месте в десять раз.
- 2. При простых операциях по получению (элюированию) и расфасовке из генераторов короткоживущих радионуклидов медицинского назначения допускается увеличение активности на рабочем месте в двадцать раз. Класс работ определяется по максимальной одновременно вымываемой (элюируемой) активности дочернего радионуклида.
- 3. Для организаций, перерабатывающих уран и его соединения, класс работ определяется в зависимости от характера производства и регламентируется с п е ц и а л ь н ы м и п р а в и л а м и .
- 4. При хранении открытых радионуклидных источников излучения допускается увеличение активности в сто раз.

Классификация жидких и твердых радиоактивных отходов

Таблица 4

	Удельная активность, кБк/кг					
Категория отходов	Бета-излучающие радионуклиды	Альфа-излучающие радионуклиды (исключая трансурановые)	Трансурановые радионуклиды			
1	2	3	4			
Низкоактивные	менее 10 ³	менее 10 ²	менее 101			
Среднеактивные	от 10 ³ до 10 ⁷	от 10^2 до 10^6	от 10 ¹ до 10 ⁵			
Высокоактивные	более 10 ⁷	более 10 ⁶	более 10 ⁵			

Приложение 5

к санитарным правилам «Санитарно-эпидемиологические требования к обеспечению радиационной безопасности»

Санитарно-эпидемиологическое заключение на право работы с источниками ионизирующего излучения (далее - ИИИ)

 Организация 			
(полное и сокращенное наимен	нование, админи	стративны	ій район, адрес,
телефон)			
2. Министерство, ведомство			
(полн	ное и сокращен	ное наиме	нование, адрес)
3. Вышестоящая (непосредо	ственно над ор)ганизаци є	ей) организация
(полное и сокра	ащенное наиме	нование, а	адрес, телефон)
4. Подразделение	организации	(объект)	, получающее
санитарно-эпидемиологическое закл	ючение		
(наименование, подчиненность в стр	NATANA UNESTRA	ании апм	шиистративицій
район,	уктурс организ	ации, адм	адрес,
телефон)			идрсс,
5. Должностное лицо, ответс	ственное за раз	тианионну	ю безопасность
на объекте	orbonino su pu,	<u> </u>	
(должность, номер, дата приказа по ор	оганизации о воз	ложении о	тветственности.
телефон)	·		,
6. Разрешаются работы с ИИИ			
Вид и характеристика ИИИ	Вид и характер работ	Место проведения работ	Ограничительные условия
1	2	3	4
I. Работы с открытыми ИИИ			
II. Работы с закрытыми ИИИ			
III. Работы с устройствами, генерирующими излучение			
IV. Другие работы с ИИИ			
7. Санитарно-эпидемиологич	еское заключен	ие выдан	о на основании
(актов приемки, обследований и други	их документов с	указанием	п номеров и дат,
органов надзора)			
Руководитель органа ГСЭН		,	
(фамилия, им	я, отчество)		

					M e c	T O	печати
		Дата	выдачи	санитарно	о-эпидемиол	огического	заключения
«	>>		Γ(ода			
						Испол	нитель:
							
	 (фам	илия, им	я, отчеств	о, должност	гь, наименова	ние органа I	ГСЭН, телефон
)							
			Исполн	ено в			экземплярах
Вру	чено):					
№ экземп	ляра	Орга	низации	Дата	Отметка о	вручении (подпі	ись)

Приложение 6 к санитарным правилам «Санитарно-эпидемиологические требования к обеспечению радиационной безопасности»

Инструкция по заполнению санитарно-эпидемиологического заключения на право работы с источниками ионизирующих излучений

1. Таблица заполняется санитарным врачом по радиационной гигиене и должна содержать все необходимые сведения о разрешенных работах ИИИ: количественной и качественной характеристике ИИИ (графа 1), виде и характере работ с ними (графа 2), месте их проведения (графа 3) и некоторых ограничительных условиях, которыми санитарный врач считает нужным оговорить разрешение на эти работы (графа 4).

Санитарно-эпидемиологическое заключение является единым документом, дающим право на эксплуатацию ИИИ, требующими разрешения органов санитарной эпидемиологической службы (включая работы по хранению ИИИ, перевозке радиоизотопных источников, сбору, перевозке и захоронению радио активных отходов).

2. Обязательно приводятся заголовок и номер раздела для разрешаемой группы работ с ИИИ. Под заголовком раздела IV приводятся те работы с ИИИ, которые не могут быть отнесены к разделам I-III: работы с генераторами радионуклидов, ядерными реакторами, радиоактивными отходами и другими ИИИ, со смешанной или нестрого определенной радиационной характеристикой.

- 3. Каждому виду ИИИ (или нескольким видам с одинаковыми радиационными характеристиками) присваивается порядковый номер внутри раздела, и к этому номеру следует относить все сведения в графах 2-4, присваивая порядковые номера записям в этих графах и используя их для соотнесения записей в последующей графе по отношению к предыдущей.
 - 4. Обязательные сведения, приводимые в графе 1:
- 1) в разделе І: радионуклид, вещество, его агрегатное состояние, максимально допустимая одноразовая активность на рабочем месте, годовое потребление;
- 2) в разделе II: нуклид, вид источника (для установок, аппаратов, приборов тип, марка, год выпуска; для нестандартных ИИИ изготовитель, данные о наличии санитарно-эпидемиологического заключения органов государственного санитарно-эпидемиологического надзора на выпуск), максимальная активность источника, максимально допустимое одноразовое количество источников на рабочем месте и их суммарная активность на рабочем месте, годовое потребление (для короткоживущих нуклидов);
- 3) в разделе III: вид источника (для установок, аппаратов, приборов те же сведения, что и в разделе II), вид, энергия и интенсивность излучения (или (и) ускоряющее напряжение, сила тока, мощность), максимально допустимое количество одновременно работающих ИИИ, количество ИИИ, размещенных в о д н о м м е с т е ;
- 4) в разделе IV: в зависимости от вида и характера ИИИ те же сведения, что и к I-III разделам (для генераторов радионуклидов данные о материнском нуклиде и производительности по дочерним продуктам);
- 5) для работ по перевозке радиоизотопных источников и радиоактивных отходов специальным транспортом вид, марка и государственный номер транспортом ;
- 6) обязательные сведения, приводимые в графе 2 указать вид и характер работ (стационарные, нестационарные, исследовательские, производительные); в графе 3 четко обозначить место работ: здание, этаж, цех, участок, комната, участок территории (в организации или вне ее); в графе 4 в разделе I (и в разделе IV при работах с открытыми ИИИ): указать класс работ, разрешенных к проведению в данных помещениях;
- 7) во всех разделах: любые необходимые ограничительные условия разрешение или запрещение проводить в данном месте другие работы, не связанные с применением ИИИ (персоналом группы А или другими работниками), исключение или уменьшение действия вредных нерадиационных факторов.

Приложение 7 к санитарным правилам «Санитарно-эпидемиологические

требован	ия к	обеспече	ению			
радиационно	й безопасн	ости»				
форма						
Регистраці	ионный	номер	организ —	ации		
Заказ-заявка	a					
на поставку	источник	ов ионизир	ующего из	пучения		
 Ha Ha 	именовани	е и почтові ие организа	ый адрес за	оставщика аказчика оторой прог		
Наименование источника	Единица измерения	Активность единицы	Количество единиц на год	В том числе по месяцам		Сумма, тенге
1	2	3	4	5	6	7
1	2		T			
Итого				<u> </u>	<u> </u>	
		таты				
	тель органа					
•			.ти «	»		—— года
6.				и заказа-за		
п о с т а			•		` -	-
7. Да	та отправі	ки источни	ков	Дата пол	пучения ист	очников
				м «»		
		Испо	элнено	в 5	экземп	лярах:
				1, 2		
экземпля	яр № 3 – ој	рган государ	оственного с	анитарно- эі	пидемиологи	ческого
надз	o p a					
		экзем	пляр	№ 4	зака	азчику
экземпля	р № 5 - Упр	авление вну	тренних дел	I		
Прилож	-	-				
к санит	арным	правил	а м			
«Санитарн	о-эпидем	миологиче	еские			

требовани радиационног форма			ени	Ю			
	P a s	в реш	a	Ю			
 (подпись «»			0]	 рганиза	ации)		
Требование (составляето	· -			х вещес	СТВ		
Прошу	выдать для						
следующи	ие радиоакти				какой	конкрет	гной работы)
Требуется	-		Факт	гически выд	цано		
Наименование	Количество			ичество	Активност		№ и дата
вещества и в и д соединений	ие Количество и (объем или Общая ч и с л о источников)		(объ ч и с исто	ло	п о паспорту	в пересчете на час выдачи вещества	паспорта, № источника (№ партии)
1	2	3	4		5	6	7
Затребовал сотруд	цник			Выдал радиоакти	ответствных вещес	 гвенный ств	за хранение
(фамилия, им	я, отчество)			(фамі	илия, имя, c	отчество)	
(название лабор «»(подпись)	атории или цеха)		года		енование о	рганизации)	
Получил (подпись)							
Часы (для Прилож		s) 9		«»		года	
к санит	арным	правил	ам				
«Санитарн	о-эпидеми	ологиче	ски	ı e			
требовани	ия к о	беспеч	ени	Ю			
радиационно							

Приходно-расходный журнал учета радионуклидных источников излучения

	Приход	Приход								
	Mo w woo		При бор, аппарат, установка			Источник				
№ п/п	Наимено- вание постав- щика	№ и дата приход- н о й наклад- ной	вание источника, прибора, аппарата, установки	Завод-	№ и дата техничес- кого паспорта	№ и дата выдачи техни- ческого паспор-та	Коли- чество (штук) № источ- ников	Актив- ность п о пас- порту	Срок служ- б ы источ- ников	
1	2	3	4	5	6	7	8	9	10	

Продолжение таблицы

Расход			Остаток		Примечание		
Кому выдано или поставлено дата выдачи	№ и дата накладной или требования	Количество источников и номера	Активность в день выдачи	Количество	Активность	Отметка возврате, списании захоронении указанием подтверждающих документов	о и с
11	12	13	14	15	16	17	

- 1. На каждый вид радионуклидного источника ионизирующего излучения открываются отдельные страницы.
- 2. Учет приборов, аппаратов и установок, укомплектованных радионуклидными источниками, ведется отдельно от учета радиоактивных веществ (в отдельном журнале).
 - 3. Журнал учета хранится постоянно.

Приложение 10 к санитарным правилам «Санитарно-эпидемиологические требования к обеспечению радиационной безопасности» форма

	Утвержд	аю
 (подпись	руководителя	 организации)
«»	года	

Акт

о расходовании и списании радионуклидных источников излучения организации

Настоящий акт составлен сотрудниками
(фамилия, имя, отчество)
Руководителем работ
(фамилия, имя, отчество)
в том, что полученное по требованию от «» года
радиоактивное вещество
(наименование, номер источника или номер
партии, номер и дата паспорта)
в количестве с удельной активностью и общей активностью
по измерениям на часов минут (первоначальная стоимость
тенге)
«» года использовано для
(указать характер работы)
Работа проводилась
(фамилия и инициалы сотрудника)
В процессе работы
(краткое описание того, что произошло с исходным нуклидом)
Отходы в виде
сданы на захоронение по документу № от «» года
Остаток вещества в количестве
общей активностью
«» года
(возвращен в хранилище или отсутствует)
Руководитель работ
(подпись)
Сотрудник
(подпись)
Ответственный за хранение нуклидов
(фамилия, инициалы)
«» года
(подпись)
Приложение 11
к санитарным правилам
«Санитарно-эпидемиологические
требования к обеспечению
радиационной безопасности»

Санитарно-технические требования к источникам излучения для радиоизотопных приборов

Изготовление источников излучения предприятиями Республики Казахстан должно проводиться по техническим условиям, согласованным с государственным уполномоченным органом в области санитарно-эпидемиологического благополучия населения Республики Казахстан. При выборе радионуклида для источника излучения к РИП следует принимать во в н и м а н и е :

- обоснование технологической необходимости применения данного радионуклида;
- токсичность радионуклида, отдавая предпочтение нуклидам с наименьшей т о к с и ч н о с т ь ю ;
- энергию излучения, выбирая нуклид с наименьшей проникающей способностью ионизирующего излучения.

Образцы источников, изготавливаемые для использования в серийных РИП, должны подвергаться испытаниям согласно действующих ГОСТов, определяющих общие технические требования к закрытым радионуклидным источникам ионизирующих излучений.

На каждый источник оформляется технический паспорт, в котором указывается его тип и номер, дата выпуска, размер, активность нуклида, назначение и другие параметры. В нем указываются допустимые пределы температуры и давления, среда, механические воздействия, при которых сохраняется целостность, герметичность и радиационная чистота источников в течение определенного срока их эксплуатации. Не допускается использование источников в условиях, не отвечающих требованиям, предъявляемым к их эксплуатации.

Требования к документации на радиоизотопные приборы

- 1. Техническая документация на РИП в обязательном порядке должна заключать в себя следующие разделы:

 1) технические требования;
 - 2) правила приемки;
 - 3) методы контроля и испытаний при продлении срока эксплуатации;
 - 4) транспортирование и хранение;
 - 5) гарантии по эксплуатации;
 - 6) указания по эксплуатации.
 - 2. В разделе "Технические требования" должна быть отмечена область

- применения РИП и их технические характеристики:
- 1) группа, к которой относится РИП;
- 2) тип и активность источника излучения, номер технических условий, по которым он изготовлен;
 - 3) условия эксплуатации РИП и источника излучения;
- 4) мощность экспозиционной дозы излучения на поверхности блока источников излучения и на расстоянии 1 м от него;
- 5) уровень "снимаемой" радиоактивной загрязненности поверхности источника излучения (определяется методом мазков);
 - 6) количество наработок на отказ;
 - 7) срок службы РИП;
 - 8) комплектность, маркировка и упаковка. В разделе "Правила приемки" указываются:
 - 1) объем и рекомендуемая последовательность испытаний;
 - 2) кто проводит испытания;
 - 3) параметры РИП до и после испытаний;
 - 4) контрольно измерительная аппаратура, применяемая при испытаниях;
 - 5) программа и периодичность испытаний;
- 6) мощность дозы излучения на расстоянии 1 м от поверхности блока источников излучения;
- 7) загрязненность внешних поверхностей РИП (или блока источников излучения) радиоактивными веществами.
- 3. В разделе "Транспортирование и хранение" указывается вид транспорта, транспортная категория радиационных упаковок, расстояние от РИП до места нахождения людей и кино-, фотопленок и другие, условия хранения.
- 4. В разделе "Требования безопасности" необходимо указывать конкретные меры по обеспечению безопасности при эксплуатации РИП.
- 5. В технической документации на РИП кроме изложенных выше требований должны быть приведены чертежи источников излучения, условия проверки источников излучения на различного рода воздействия и результаты испытаний. В ней также должны быть представлены чертежи блока источников излучения и подробное описание крепления источника, его экранировки и способа перевода прибора (источника) в нерабочее и рабочее положения.
- 6. При ссылках на законодательные и нормативные документы необходимо указывать конкретные разделы, пункты, параграфы, которые имеют непосредственное отношение к излагаемому разделу технической документации.
- 7. В инструкции по эксплуатации РИП необходимо подробно описывать меры по обеспечению радиационной безопасности (в том числе и по обеспечению целостности и сохранности источника излучения) при

установке, профилактическом ремонте, транспортировании, хранении, эксплуатации и утилизации РИП (блока источника излучения), а также при возникновении аварийных ситуаций.

8. Инструкция по эксплуатации РИП должна содержать рекомендации по обеспечению радиационной безопасности при аварийном разрушении РИП (источника излучения). При этом следует рассматривать такие ситуации, как невозможность перевода РИП (источника излучения) из рабочего положения в нерабочее, выпадение, механическое разрушение источника излучения, пожар.

1 2 Приложение санитарным правилам «Санитарно-эпидемиологические требования К обеспечению радиационной безопасности»

Допустимые удельные активности основных долгоживущих радионуклидов для неограниченного использования металлов

Радионуклиды	Период полураспада	Допустимая удельная активность отдельного радионуклида ДК, кБк/кг
1	2	3
⁵⁴ Мп	312 суток	1,0
⁶⁰ Co	5,3 год	0,3
⁶⁵ Zn	244 суток	1,0
⁹⁴ Nb	2,0 x 10 ⁴ год	0,4
106 Ru + 106m Rh	368 суток	4,0
^{110m} Ag	250 суток	0,3
¹²⁵ Sb+ ^{125m} Te	2,8 год	1,6
¹³⁴ Cs	2,1 год	0,5
¹³⁷ Cs+ ^{137m} Ba	30,2 год	1,0
¹⁵² Eu	13,3 год	0,5
¹⁵⁴ Eu	8,8 год	0,5
90Sr + 90Y	29,1 год	10,0
²²⁶ Ra	11,6 x 10 ³ лет	0,4
²³² Th	1 x 10 ¹⁰ лет	0,3

1. При наличии в металле смеси радионуклидов значения удельных активностей отдельных радионуклидов Q_i должны удовлетворять соотношению

 Σ $Q_i / Д K_i < 1$

Приложение 13 санитарным правилам «Санитарно-эпидемиологические требования к обеспечению радиационной безопасности»

Сведения

о дозах облучения лиц из персонала в условиях нормальной

эксплуатации техногенні	ых источников ионизирую	ощих излучений за
20 год		
персонал группы «А», государственного санита	ии, работающей с техноген для представления в дрно-эпидемиологического ки Казахстан по	цепартамент комитета надзора Министерства
Форма № 1-ДОЗ		
ОТЧЕТ ЗА полуг	одие 20 года	
Почтовый адрес _ Вид деятельности Отрасль	тывающей организации	
Ответственный	3 a	
радиационную	безопасность	(контроль)
(должность)		
(Ф . И . О .)		
(подпись) "		
Форма 1-ДОЗ		

Сведения о дозах облучения лиц из персонала в условиях нормальной эксплуатации техногенных источников ионизирующих излучений за 20__ год

		д отчитываю		•	_				
							я организации		
			ГД	е осуществл	іяет св	ою ,	деятельность, о	ТЧИТЫ	вающаяся
op	ганизаг	[ИЯ							
№	Ф.И.О.	№ удостовере личности	кин	д а т а рождения	пол (М/Ж)	Код работ	статуса гника	код вид	ца ИИИ
1	2	3		4	5	6		7	
Пр	одолже	ение таблицы							
Св	едения об	облучения							
Эф	фективная	н доза, мЗв					Эквивалентная доза, п	мЗв.	
от	внешнего	облучения	от в	нутреннего облу	чения		код органа или ткани		Доза
8			9				10		11
«C	ведени	я о дозах о	блу	чения лиц	из пе	рсон	нала в условия	х рад	иационной
ав	арии 1	или планиру	уем	ого повыі	шенног	0	облучения, а	такж	е лиц из
на	селения	я, подвергшег	ося	аварийном	у облуч	ени	Ю»		
							ехногенными И	и ИИІ	имеющей
_		-		• -			ия в департа		
	•			•			ского надзора		
	-			-			пого пидоори		-
	-	Алматы, на тр	-		ACTUII	110		_ 00.	nacin, i.i.
А	ланы, г	алматы, на тр	анс	портс					
Ф	орма М	<u>№</u> 2-ДОЗ							
	_	ВАпо	.	ролия 20	TO.	то			
U.	IMEIS	OA IIC)JIY	годие 20	10	да			
	Наг	именование о	тчи	тывающей	опгань	เรลเบ	ии		
		чтовый адре		тывающен	opi u iii	ющ			
	_	_							
		ид деятельно	ли.						
		расль							
		-		й пункт, где	е распо	лож	ено предприятис	e	
O	твет	ственны	Й	3 a					
рa	диаци	онную		бе	зопас	нос	ТЬ	(K	сонтроль)
(;	дол:	жность					_		
(Φ. Ι						_		

(]		пись)									
		 	_ 200) г.							
	рма 2-Д										
«C	ведения	о дозах обл	учен	ви диц ви	персонала	в усло	овиях р	адиаці	ионной аварии		
ил	и плані	ируемого п	овыі	шенного	облучения	я, а т	акже з	тиц и	з населения,		
ПО,	двергше	гося аварий:	ному	облучени	ію»						
	Код	отчитываю	щейс	ся органи	зации						
	Код	вида деято	ельно	ости отчи	тывающеі	йся ор	ганизаі	ции			
	Код	территории	I, ГД6	е осущест	твляет сво	ю дея	тельно	сть от	читывающаяся		
	органи	зация									
№	Ф.И.О.	№ удост.личн.		ата ождения	пол (М/Ж)	Код работни	статуса ка	код вида	а ИИИ		
1	2	3	4		5	6		7			
Пр	одолже	ние таблицы	[
Све	едения об о	блучения						TROME	. но проргорим і		
Эф	фективная,	доза, мЗв		Эквивалентн	ая доза, мЗв		Код,		подвергавший планируемому		
от обл	внешн іучения	его от внутре облучения	еннего	код или ткани	органа	Доза	повы	овышенному облучению			
8		9		10		11	12				
На м (сан Рес	дзора М учно-пр онито 2. Р спертиз нитарно спублик	Линистерств рактический ринга» ГКП «Науч вы и м	ва зд цен пно-п пони огиче я.	дравоохра итр санит к практичеси торинга» еского н	пения Регарно-эпид кий центр в кадзора М	спублі (емиол санит омите Іинист	тарно-з ики Ка огичес 0 гарно-э т го терства	опидем кой э пидем осудар здра			
•		-		•			ZHUIUS	ITTIKU	U		
За		по	myı	одис отче	1H01.0 1.07	ια 2U_					
Кол	д области	код район	a	о д	код	вида	Количес		персонала рытыми ИИИ		
		1	O	рганизации	деятельност	И	Муж.		Жен.		
1		2	3		4		5		6		

Продолжение таблицы

-	1		і доза, получень	ная персоналом	в возрасте, мЗв.	
Муж.	Жен.	8-25 лет	25-35 лет	36-45 лет	46-55 лет	56-65 лет
7	8	9	10	11	12	13

Примечание: в отчете, направляемом в комитет государственного санитарно-эпидемиологического надзора Министерства здравоохранения Республики Казахстан строки по столбцам 2 и 3 не заполняются.

Ведомственная статистическая отчетность

Представляют:

- 1. Департаменты комитета государственного санитарно-эпидемиологического надзора Министерства здравоохранения Республики Казахстан в РГКП « Научно-практический центр санитарно-эпидемиологической экспертизы и мониторинга» к 10 июля и 10 января.
- 2. РГКП «Научно-практический центр санитарно-эпидемиологической экспертизы и мониторинга» в комитет государственного санитарно-эпидемиологического надзора Министерства здравоохранения Республики к 30 января.

Отчет по учету индивидуальных доз персонала работающего с ИИИ в условиях радиационной аварии или планируемого повышенного облучения, а также лиц из населения, подвергшегося аварийному облучению»

За _____ полугодие отчетного года 20____

Код области	код района	к о д организации	код деятельности	вида	, ,	дважды гвию ИИИ	подвергшихся
1	2	3	4		5		

Продолжение таблицы

Количество Количество персонала персонала работающих с работающих с открытыми ИИИ закрытыми ИИИ			та дих с Эффективная доза, полученная персоналом в возрасте, м				тЗв.	
Муж.	Жен.	Муж.	Жен. 18-25 лет 25-35 лет		25-35 лет	36-45 лет	46-55 лет	56-65 лет
6	7	8	9	10	11	12	13	14

Порядок учета доз профессионального облучения и заполнения учетно-отчетных форм.

В соответствии с Законом Республики Казахстан от 23 апреля 1998 года № 219-I «О радиационной безопасности населения» и постановлением Правительства Республики Казахстан от 19 декабря 2003 года № 1277 «Об утверждении Правил контроля и учета индивидуальных доз облучения, полученных гражданами при работе с источниками ионизирующего излучения, проведении медицинских рентгенорадиологических процедур, а также обусловленных радиационным фоном» контроль и учет индивидуальных доз облучения должен осуществляться в рамках единой государственной системы.

Информация о накопленной персоналом дозе облучения должна сохраняться в организации, использующей ИИИ, в государственных органах санитарно-эпидемиологической службы Республики Казахстан и научно-практическом центре санитарно-эпидемиологической экспертизы и мониторинга комитета государственного санитарно-эпидемиологического надзора Министерства здравоохранения Республики Казахстан в течение 30 лет после окончания работы или пока работнику не исполнится 75 лет.

Данные сведения могут получить:

- 1. государственные органы с мотивацией причины;
- 2. юридические лица (организации и предприятия), которые имеют лицензию на право проведения работ с использованием ИИИ;
- 3. лица, данные которых по индивидуальным дозам облучения накапливаются и хранятся в республиканской базе данных.

1. Область применения

№ 1-ДОЗ «Сведения о дозах облучения лиц из персонала в условиях нормальной эксплуатации техногенных источников ионизирующего излучения» и формы № 2-ДОЗ «Сведения о дозах облучения лиц из персонала в условиях радиационной аварии или планируемого повышенного облучения, а также лиц из населения, подвергшегося аварийному облучению».

Контроль и учет индивидуальных доз облучения персонала проводится в ц е л я х :

- 1) получения объективной информации об индивидуальных дозах облучения персонала, полученных при работе с источниками ионизирующего излучения, проведении медицинских рентгенологических процедур, а так же обусловленных р а д и а ц и о н н ы м ф о н о м ;
 - 2) учета лиц, подвергающихся облучению выше установленных пределов;
- 3) обеспечения возможности получения объективной и достоверной информации о дозах облучения персонала организации;
 - 4) оценки воздействия радиационного фактора на персонал;
 - 5) принятия мер по снижению уровней облучения персонала.

Требования настоящих рекомендаций по заполнению формы № 1-ДОЗ и формы № 2-ДОЗ (далее по тексту форма) являются едиными для организаций любой ведомственной принадлежности и формы собственности, работающих с техногенными ИИИ имеющих персонал группы А.

2. Общие положения

Формы № 1-ДОЗ и № 2-ДОЗ заполняются:

- 1) организациями и предприятиями независимо от ведомственной подчиненности;
- 2) организациями, персонал которых использует в трудовом процессе техногенные ИИИ и имеют персонал группы А.

Лиц, ответственные за радиационную безопасность организаций и предприятий, заполняют полугодовую и годовую форму и представляют ее в государственные органы санитарно-эпидемиологического надзора области, городов Астаны, Алматы и на транспорте Республики Казахстан, которые в свою очередь обобщают полученные данные и представляют их в РГКП «Научный практический центр санитарно-эпидемиологичекой экспертизы и мониторинга» (далее - РГКП «НПЦСЭЭиМ»).

Формы представляются не позднее 10 числа, следующего за отчетным полугодием, на листах белой бумаги формата А 4 и в виде электронных копий. Оба документа (подлинник и электронная копия) должны быть полностью идентичны.

3. Порядок заполнения формы № 1–ДОЗ

Форма № 1-ДОЗ заполняется организациями и предприятиями, проводящими работы с ИИИ и имеющими персонал группы А за полугодие и год по результатам измерений индивидуальных доз облучения персонала группы А. При отсутствии данных ИДК персонала группы А, в соответствующие графы формы заносятся дозы, полученные расчетным методом.

Организации и предприятия, заполняющие форму, обязаны включать в отчеты также временно прикомандированных лиц персонала группы А.

В соответствующих позициях первой страницы формы указывается полное наименование организации, полный почтовый адрес с почтовым индексом без каких-либо сокращений. После полного наименования организации в скобках указывается ее официальное сокращенное наименование, если таковое имеется.

В строке «Почтовый адрес» указывается почтовый индекс, адрес отчитывающейся организации.

На первой странице формы в соответствующие графы последовательно заносятся коды организации по классификаторам (постоянную кодировку организаций составляют органы государственного санитарно-эпидемиологического надзора на соответствующей территории):

- код отчитывающейся организации (разрабатывается государственным органом санитарно-эпидемиологической службы соответствующей территории и указывается в примечании к форме № 1-ДОЗ;
- 2) код территории, где осуществляет свою деятельность, отчитывающаяся организация по таблице 1
- 3) код вида деятельности отчитывающейся организации, указывается с о г л а с н о т а б л и ц ы 2
 - 4) в графе 1 указывается порядковый номер лиц персонала группы А;
- 5) в графе 2 указывается полностью фамилия, имя и отчество работника. Заполнение графы инициалами работника не допускается;
 - 6) в графе 3 указывается номер документа, удостоверяющий личность;
- 7) в графе 4 указывается дата рождения работника. Она заполняется цифрами, соответствующими числу, месяцу и году рождения, которые разделяются точками. При этом число и месяц проставляются двумя цифрами (для чисел менее 10 слева добавляется ноль), а год указывается полностью четырехзначным числом (например: 02.11.1971);
- 8) в графе 5 указывается пол работника: «М» мужской, «Ж» женский; в графе 6 указываются коды, которые определяют по таблице № 3 Приложения № 1 к настоящим методическим рекомендациям, в соответствии со статусом р а б о т н и к а ;
- 9) в графе 7 проставляются коды, которые выбираются по таблице 4 приложения 1 к настоящим методическим рекомендациям в соответствии с

видом ионизирующего излучения (ИИ). При этом с порядковым номером с первого по шестое относятся к внешнему облучению различными видами ионизирующего излучения, а седьмая - к внутреннему облучению за счет поступления радионуклидов в организм работающих;

- 10) графа 8 заполняется по официальным данным индивидуальной дозиметрии внешнего облучения работника в отчетном году (мЗв);
- 11) годовая эффективная доза внешнего облучения персонала определяется в соответствии действующими нормативными документами;
- 12) графа 9 заполняется по официальным данным индивидуальной дозиметрии внутреннего облучения работника в отчетном году (мЗв). Годовую эффективную дозу внутреннего облучения персонала учитывают при ведении работ с радиоактивными веществами в открытом виде и определяют по результатам измерения объемной активности радионуклидов в воздухе рабочей зоны производственных помещений или в зоне дыхания с использованием индивидуальных пробоотборников, прямого измерения содержания радионуклидов в организме с помощью счетчиков излучения человека и (или) а на ли за био субстратов выделений;
- 13) годовая эффективная доза внутреннего облучения персонала определяется с использованием приложения 2 к настоящим методическим рекомендациям.

В графе 10 проставляются коды, которые определяют по таблице № 5 Приложения № 3 в соответствии с видом органа или ткани, подвергшегося облучению ИИИ. При этом заносятся данные только для тех органов (тканей), для которых определены пределы доз в ГН.

В графу 11 заносятся значения эквивалентной дозы (мЗв) в хрусталике глаза, коже, кистях рук и стопах, нижней части области живота (для женщин в возрасте до 45 лет) персонала, полученные по результатам индивидуальной дозиметрии этих органов. Эти данные заносятся только в тех случаях, когда контроль эквивалентных доз в вышеперечисленных органах необходим и проводится.

Если в результате измерений индивидуальной дозы внешнего или внутреннего облучения, либо дозы в органе (ткани) измеренная величина оказалась меньше минимально измеряемого значения, метрологический установленного для используемого средства измерения, то в соответствующей графе (8, 9, 11) проставляется значение «0». При этом в графе 10 проставляется прочерк

Если факт одного из вышеперечисленных видов облучения был зафиксирован, но численное значение соответствующей дозы неизвестно, то в соответствующей графе (8, 9, 11) вместо величины дозы проставляется код «-1». 4. Порядок заполнения формы № 2-ДОЗ

В форму № 2-ДОЗ заносятся индивидуальные дозы, связанные с планируемым повышенным облучением и облучением в результате радиационных аварий.

В случае превышения допустимой эффективной дозы персонала (20 мЗв в год), необходимо указать в примечании причину, за какой период и кем и в каких условиях была фамилия, имя, отчество, возраст, место проживания) получена повышенная доза, полное название организации (почтовый адрес), вид воздействующего ИИ, проведенные мероприятия и рекомендации по р а с с л е д о в а н и ю .

В таблицу 1 формы № 2-ДОЗ заносятся индивидуальные дозы, связанные с планируемого повышенного облучения персонала или облучения в результате радиационной аварии, а также органов государственного санитарно-эпидемиологического надзора соответствующих территорий, на которых в отчетном году имело место аварийное облучение населения.

Форма заполняется ежегодно по результатам измерений или расчета индивидуальных доз планируемого повышенного облучения персонала и облучения в случае радиационных аварий, а также лиц из населения, подвергшихся аварийному облучению в отчетном году.

Дозы аварийного облучения населения заносятся только в форму, относящуюся к первому году после данной радиационной аварии. В последующие годы, дозы облучения населения за счет прошлых радиационных аварий в форму не заносятся.

Организации и предприятия, заполняющие форму, обязаны включать в отчеты также временно прикомандированных лиц.

Выявление лиц из населения, подвергшегося аварийному облучению, и оценку индивидуальных доз облучения персонала предприятия, на котором произошла радиационная авария, проводят органы государственного санитарно-эпидемиологического надзора Республики Казахстан, расследование причин аварии проводится специальной комиссией. В зависимости от масштабов аварии в этой работе также могут участвовать учреждения (предприятия) соответствующих министерств и ведомств, проводящие ликвидацию п о с л е д с т в и й а в а р и и .

В строке «Наименование отчитывающейся организации» указывается полное наименование организации без каких-либо сокращений. После полного наименования организации в скобках указывается ее официальное сокращенное наименование, если такое имеется.

В строке «Почтовый адрес» указывается почтовый индекс и полный почтовый адрес отчитывающейся организации.

На первой странице формы в соответствующие графы последовательно

- 1) код отчитывающейся организации, постоянную кодировку организации составляют органы государственного санитарно-эпидемиологического надзора на соответствующих территориях (расшифровку следует указать в примечании);
- 2) код территории, где осуществляет свою деятельность, отчитывающаяся организация, обозначены по таблице 1;
- 3) код вида деятельности отчитывающейся организации обозначены в т а б л и ц е 2

В графе 1 — указывается порядковый номер лиц персонала группы A и н а с е л е н и я .

В графе 2 – указывается полностью фамилия, имя и отчество работника. Заполнение графы инициалами работника не допускается.

В графе 3 - указывается номер документа, удостоверяющего личность.

В графе 4 - указывается дата рождения работника. Она заполняется цифрами, соответствующими числу, месяцу и году рождения, которые разделяются точками. При этом число и месяц проставляются двумя цифрами (для чисел менее 10 слева добавляется ноль), а год указывается полностью четырехзначным числом (например: 02.11.1971).

В графе 5 – указывается пол работника: «М» - мужской, «Ж» - женский. В графе 6 - указываются коды, которые определяют по таблице 3, в соответствии со статусом работника.

В графе 7 проставляются коды, которые выбираются по таблице 4, в соответствии с видом ионизирующего излучения (ИИ). При этом с порядковым номером 1 по 6 относятся к внешнему облучению различными видами ионизирующего излучения, а седьмая - к внутреннему облучению за счет поступления радионуклидов в организм работающих.

Графа 8 заполняется по официальным данным индивидуальной дозиметрии внешнего облучения работника в отчетном году (мЗв).

Графа 9 заполняется по официальным данным индивидуальной дозиметрии внутреннего облучения работника в отчетном году (мЗв). Годовую эффективную дозу внутреннего облучения персонала учитывают при ведении работ с радиоактивными веществами в открытом виде и определяют по результатам измерения объемной активности радионуклидов в воздухе рабочей зоны производственных помещений или в зоне дыхания с использованием индивидуальных пробоотборников, прямого измерения содержания радионуклидов в организме с помощью счетчиков излучения человека и (или) а нализа биосубстратов выделений.

В графе 10 проставляются коды, которые определяют по таблице 5, в соответствии с видом органа или ткани, подвергшегося облучению ИИИ. При

этом заносятся данные только для тех органов (тканей), для которых определены пределы доз в Γ H .

В графу 11 заносятся значения эквивалентной дозы (мЗв) в хрусталике глаза, коже, кистях рук и стопах, нижней части области живота (для женщин в возрасте до 45 лет) персонала, полученные по результатам индивидуальной дозиметрии этих органов. Эти данные заносятся только в тех случаях, когда контроль эквивалентных доз в вышеперечисленных органах необходим и проводится. Эквивалентные дозы определяются только для тех органов (тканей), для которых их определение должно проводиться в соответствии со специальными методическими документами, действующие на территории Республики К а з а х с т а н .

В графу 12 заносится код, который состоит из трех позиций по таблице № 6. В форму заносится значение годовой индивидуальной дозы для человека, относящегося к персоналу группы А, который дважды в отчетном году подвергся планируемому повышенному облучению. Для него в графе 12 проставляется код «1П2».

5. Порядок заполнения формы учета дозы персонала государственными органами санитарно-эпидемиологической службы Республики Казахстан

Органы государственного санитарно-эпидемиологического надзора полученные данные по учету доз персонала организации обобщают и представляют сведения в РГКП «Научно-практический центр санитарно-эпидемиологической экспертизы и мониторинга» Комитета государственного санитарно-эпидемиологического надзора Министерства здравоохранения Республики Казахстан (далее РГКП - «НПЦСЭЭМ»). В соответствующих позициях первой страницы формы указывается полное наименование организации, полный почтовый адрес с почтовым индексом без каких-либо сокращений. После полного наименования организации в скобках указывается ее официальное сокращенное наименование, если таковое имеется.

В соответствующие клетки таблицы заносятся:

- 1) в первой графе коды областей по таблице 1;
- 2) во второй графе районы, находящиеся организации, использующие ИИИ (расшифровку указать в примечании);
- 3) в третьей графе код организации, использующие ИИИ (расшифровку у к а з а т ь в примечании);
 - 4) в четвертой графе код вида деятельности организации по таблице № 2;
- 5) в пятой-шестой графах общее количество персонала, работающего с открытыми ИИИ;
- 6) в седьмой и восьмой графе заносится общее количество персонала, работающего с закрытыми ИИИ;

7) в графах с девятого по тринадцатое – заполняется полученная эффективная доза персонала по возрастам, в диапазоне от самых низких до самых высоких показаний доз облучения, в мЗв.

Коды областей Республики Казахстан охваченной ИДК

Таблица 1

№	Наименование областей	код
1	2	3
1	Акмолинская область	C 001
2	Актюбинская область	D 002
3	Атырауская область	E 003
4	Алматинская область	B 004
5	Восточно-Казахстанская область	F 005
6	Жамбылская область	H 006
7	Западно-Казахстанская область	L 007
8	Карагандинская область	M 008
9	Кустанайская область	P 009
10	Кызылординская область	N 010
11	Мангистауская область	R 011
12	Павлодарская область	S 012
13	Северо-Казахстанская область	T 013
14	Южно-Казахстанская область	X 014
15	г. Алматы	A 015
16	г. Астана	Z 016

Коды вида деятельности организации, работающие с техногенными ИИИ и имеющие персонал группы ${\bf A}$

Таблица 2

№ п/ п	Наименование организации	код
1	2	3
1	Медицинские учреждения, в том числе НИИ медицинского профиля	M 01
2	Промышленные предприятия, в том числе организации выполняющие ремонт, наладку, калибровку оборудований с использованием ИИ	P 02
3	Научно-исследовательские институты, в том числе высшие учебные заведения кроме медицинского профиля	S 03

Код статуса работника с ИИИ

Таблица 3

No	Статус работника	Код
1	2	3
2	Работал весь отчетный год	001
3	Прикомандирован в отчетном году*	002
4	Уволился в отчетном году **	003

5	Вышел на пенсию в отчетном году	004	
6	Умер в отчетном году	005	

^{*} для работника с указанным статусом дозы указываются за все время прикомандирования

** для работника с указанным статусом дозы указываются с начала года до увольнения

Коды ИИИ использующие в своей деятельности организации

Таблица 4

№ п/п	Вид воздействующего ИИ	код
1	2	3
1	Рентгеновское	R 101
2	Альфа	A 102
3	Бета	B 103
4	Гамма	G 104
5	Нейтронное	N 105
6	Радионуклид	I 106
7	Другие	X 107

Коды органов и ткани, подвергшихся воздействию ИИИ

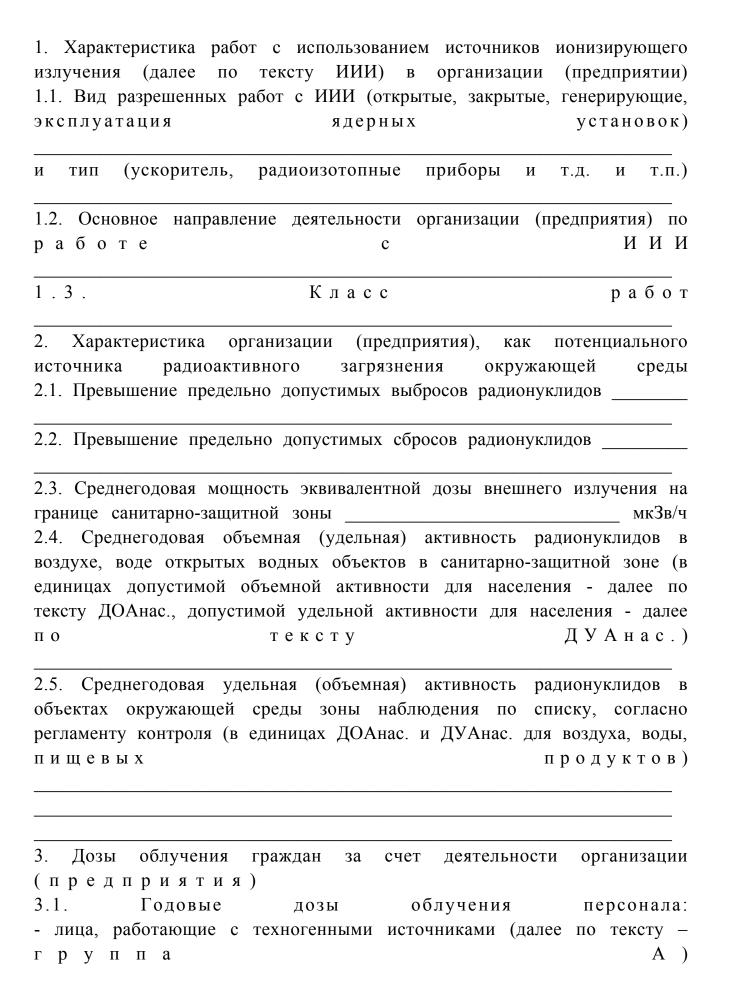
Таблица 5

№	Вид органа или ткани, подвергшегося воздействию ИИ	Код
1	2	3
1	Половые железы	01
2	Красный костный мозг	02
3	Толстый кишечник	03
4	Легкие	04
5	Желудок	05
6	Мочевой пузырь	06
7	Грудные железы	07
8	Печень	08
9	Пищевод	09
10	Щитовидная железа	010
11	Хрусталик	011
12	Кожа	012
13	Кисти и стопы	013
14	Поверхность костей	014
15	Остальное	015
16	Нижняя часть области живота *	016

^{* -} определяется только для женщин в возрасте до 45 лет

Коды лиц, подвергшихся воздействию ИИИ

Таблица 6


Н о м е р позиции кода	Код	Значение					
1	2	3					
	1	Персонал группы А					
1	2	Персонал группы Б					
1	3	Работающие, не отнесенные к персоналу					
	4	Остальное население, подвергшееся аварийному облучению					
А Авари		Аварийное облучение					
2	П	Планируемое повышенное облучение					
3	Номера начиная с 1.	Число случаев планируемого повышенного или аварийного облучения данного лица в отчетном году.					

Приложение 14 к санитарным правилам «Санитарно-эпидемиологические требования к обеспечению радиационной безопасности»

Типовая форма

радиационно-гигиенического паспорта организации

Радиационно-га	игиенически	ій заключ	ения (организац	ИИ	предприят	гия,
использующей	источники	ионизирую	ощего из	лучения,	по	состоянию	на
						Γ	о д
(представляется	администра	ции субъекта	Республи	ки Казахс	тан д	о 20 января))
Наименовани	e	органи	зации		(1	предприят	(ки
Ведомственная	принадлежн	ость					
Адрес	(рганизаци	ИИ		(п	редприят	ия)
T 1							
Телефон админі	истрации			_ факс			
Гелефон админи Дата, номер					ции	(предприят	— - гия)
Дата, номер	и место р	регистрации	Устава	организа			
	и место р	регистрации	Устава	организа			
Дата, номер Наименование	и место р	регистрации	Устава очниками	организа	ующ		— ния —
Дата, номер Наименование	и место р подразделе и номер	ения с исто	Устава очниками	организа	ующ	его излуче	— ния — ами
Дата, номер Наименование Дата выдачи	и место р подразделе и номер	ения с исто	Устава очниками	организа	ующ	его излуче	— ния — ами

техногенных источни	ков (далее по тек	ксту - гру	уппа Б)		
			по группе А	по группе Б	
1			2	3	
Средняя индивидуальная мЗв	годовая эффектив	ная доза,			
Годовая эффективная коллект	ивная доза, челЗв				
Количество лиц с превы пределов для персонала:	лшениями основных	дозовых			
3.2. Численность на	селения, прожи	вающего	о в зоне наб	людения:	_
наблюдения, за - Средняя индивиду	альная годовая	ьности эффект	организаці ивная доза,	ии (предпр	
- Годовая эффектив					
- Количество лиц		ями ос	новных дозо	вых предело	ов для
населени					
3.3.(*) Годовые до			гучения насе	еления (запол	тняется
только медицинскими	г организациями Г				
	Количество процедур за год	Средняя доза (процедуру	эффективная [мЗв] за 1	Коллективная челЗв/год	доза,
1	2	3		4	
Рентгенографические					
Рентгеноскопические					
Радионуклидные					
4. Оценка эффекти	івности меропі	риятий	по обеспече	ению радиац	ионной
безопасности и вып области	олнению норм, радиаци	_		еских нормат безопас	
5. Радиат	ционные	ав	арии,	происш	 ествия
6. Наличие планов происшествий и их			-		-
Подпись и должно паспорт и ответство (предприят	енного за ради		-		

лица, находящиеся по условиям работы в сфере воздействия

<u>(Фамилия, И.,О.)</u>	(]	Подпись)	(Дата)
7. Параметры, по которым п	ревышены	радиационные	показатели для
нормальной эксплуатации по	о оценке	администраци	и организации
(предприятия) з	a	отчетный	год
Дата и подпись руков	одителя	организации	(предприятия):
(Фамилия, И.,O.) —	(По		(Дата)
8. Заключение госуда			в сфере
санитарно-эпидемиологического	благо	ополучия на	аселения на
соответствующей территории,	оценка инд	цивидуального и	и коллективного
рисков возникновения	сто	охастических	эффектов
Главный государственный сани о б л а с т и) ——————————————————————————————————	(Парственно	Годпись) го органа	(Дата) в сфере
	ганизациі		(предприятия):
(Фамилия, И.,О.) (Подпис	сь) (Д	 Цата)	·
Типовая форма			
радиационно-гигиенического за	ключения	герритории	
Радиационно-гигиеническое	3aı	слючение	территории
по состоянию на год			
Название территории	субъекта	Республики	Казахстан
Число жителей			
Площадь территории субъекта Р			км2
Телефон администрации	•		

1. Перечень ооъектов, и	спользующ	их источн	ики ионизи	рующего излучени
2. Общая характери и о н и з и р у ю щ е г о	истика о	бъектов,	используі	ющих источник излучени
3. Характеристика ра	лиоактивно	ого загря	знения ок	ружаюшей срель
3.1. Плотн				
Цезий-137			1	
,	cpe	цнее	Mal	кс
Стронций-90				
мин.	cpe,	днее	ма	кс
Плутоний - 239	*	и		други
мин.	cpe	цнее	Ma l	кс
3.2. Объемная активност				
в о д о е м о в 3.4. Удельная активнос питьевого	сть радиог	ктивных		воде источнико водоснабжени
3.5. Удельная активност местного				производств
			радиоакти	
строительных ма	атериалах	И3	мест	гного сырь
4. Наличие на терри	тории рад	циационны	іх аномали	ий и загрязнени
5. Структура облучения на	селения прі			•
	чество дур за год	Средняя доза (м3 процедуру	за 1,	Коллективная доза, челЗв/год

1	2	3	4	4	
Рентгенографические					
Рентгеноскопические					
Радионуклидные					
6. Анализ доз облуч	ения населения	, в т.ч. пе	ерсонала - л	иц, работающ	их с
техногенными источн	иками (далее по	тексту - гр	руппа А) и л	иц, находящих	ся по
условиям работы в сф	ере воздействия	техногенн	ых источник	ов (далее по те	жсту -
группа Б)					
6.1. Годовые дозы обл	учения персонал	та:			
			по группе А	по группе Б	
1			2	3	
Средняя индивидуальная м3в	годовая эффекти	ивная доза,			
Годовая эффективная коллект	ивная доза, челЗв				
Количество лиц с пре пределов для персонала:	вышениями основн	ых дозовых			
 2) Годовая эффекти 3) Количество липнасе пени 6.3. Структура го (чел Зв) 1) деятельности призлучени 	с превышения я довой эффект	ием осно ивной ко	вных дозон	дозы насе	ления от:
2) глобальных выпад 3) естественных ист 4) медицинских исс 5) радиационных ава 7. Количество радиа 8. Наличие случаев 9. Анализ меропри выполнению норм, радиационной	гочников педований прий и происше ционных аварий лучевой патол ятий по обест правил и г	ствий и проист огии (чис печению р	шествий ло заболева радиационно ских норма	.ний в год) _ ой безопаснос	сти и
• • • • • •					. 1

10. Наличие соответствующей структуры у администрации территории

субъекта Республики происшествий,		пиквидации р средст		х аварий и сил
	тории (рай	_	иационно-ги	
			(Должі	ность)
Фамилия, И 11. Оценка администрадиационной сит	грацией территор	•	Республики	
Руководитель админи	страции территор	рии субъекта	Республики	и Казахстан
санитарно-эпидемиол соответствующей тер	государстве огического (енного о благополучия индивидуал	населе населе	сфере
Главный го	сударственный	сан	итарный	врач
(Фамилия, Имя, Ото С заключением санитарно-эпидемиол соответствующей терра администрации террит (Фамилия, Имя, Отчест Приложение к санитарным	государстве огического боитории ознакомл гории субъекта Р	благополучия ен (должност еспублики Ка	населе ть, Ф.И.О. р азахстан)	ения на уководителя

Методика оценки доз

облучения работников организаций НГК природными источниками

1. Контроль внешнего облучения работников

- 1. Эффективные дозы облучения работников организаций определяются средними значениями мощности дозы гамма-излучения и временем, в течение которого работники подвергаются облучению.
- 2. Оценку эффективной дозы внешнего облучения работников следует проводить на основе измеренных значений мощности дозы (далее Р) внешнего гамма-излучения на высоте 1 м над поверхностью земли (пола) на рабочем месте и времени работы данного работника на рассматриваемом участке (операции) в течение года (далее Т)

Годовая эффективная доза внешнего гамма-излучения ($E_1^{\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ }$) рассчитывается по формуле:

$$E_1^{\text{внешн}} = K^e P_v T_p, м3в/год, (1)$$

где: K^e - дозовый коэффициент, значение которого принимается равным: 1) 0,006 мЗв/мР, если P_y - мощность экспозиционной дозы в миллиРентгенах в час (далее - мР/ч);

- 2) 0,0007 м3в/мк3в, если P_{V} мощность эквивалентной дозы в мк3в/ч.
- 3. Мощность дозы гамма-излучения (P_y) должна определяться с учетом уровня собственного фона дозиметра (P_{φ}) и отклика его на космическое излучение (P_{κ}):

$$P_y = P_1 - (P_{\phi} + P_{\kappa})$$
 (2)

где: Р₁ - показания дозиметра в точке измерений.

Численное значение параметра ($P_{\varphi} + P_{\kappa}$) определяется для каждого дозиметра индивидуально путем многократных измерений, выполненных над водной поверхностью при глубине воды не менее 5 м на расстоянии от берега 50 м или б о л е е .

4. Время работы на различных технологических участках T_p (час) может колебаться от 0 до 2000 ч в год. Если работник в течение года работает на нескольких участках (N рабочих местах или операциях) с существенно отличающимися значениями P, для него годовая эффективная доза за счет внешнего облучения составит:

$$E_1^{\text{eneum.}} = K^e \cdot \sum_{n=1}^N P_{y,n} \cdot T_{p,n}, \text{M30},$$
(3)

где P_y - мощность дозы на высоте 1 м над поверхностью n-го участка; T_{pn} - время работы на n-ом участке в течение года.

5. При определении дозы внешнего облучения работника должно выполняться условие:

$$\sum_{n=1}^{N} P_{p}^{e}, \qquad (4)$$

где $T_{\rm p}$ - штатная продолжительность работы работника в течение года, ч.

2. Контроль облучения работников за счет ингаляционного поступления долго живущих природных радионуклидов с производственной пылью

- 6. Доза внутреннего облучения за счет ингаляционного поступления природных радионуклидов (далее ПРН) с производственной пылью определяется радионуклидным составом и удельной активностью пылящего материала и самой пыли, общей запыленностью воздуха производственной зоны и временем работы в конкретных условиях, применением средств индивидуальной защиты органов дыхания. Радионуклидный состав, удельная активность пыли и общая запыленность воздуха зависят от параметров технологических процессов, температурного режима работ, используемых химических реагентов, дисперсности и объема материала.
- 7. Эффективная доза внутреннего облучения работника за счет ингаляционного поступления с производственной пылью одного радионуклида на одном постоянном рабочем месте определяется по формуле:

$$E^{\mathrm{BHYTP.}} = k_{\mathrm{d}} \cdot C_{\mathrm{n}} \cdot f \cdot V \cdot T$$
, мЗв/год, (5)

где k_d - дозовый коэффициент (Зв/Бк), значения которого для основных радионуклидов рядов урана и тория приведены в приложении 13; C_n - удельная активность радионуклидов в производственной пыли, кБк/кг;

f - средняя запыленность воздуха, мг/м 3 ; V - средняя скорость дыхания работающих, м 3 /ч; T - время нахождения в зоне запыленности в течение года, ч/год. Выражение (5) справедливо при оценке доз облучения в случае постоянных з н а ч е н и й в е л и ч и н C_n , f и V.

- 8. При переменных во времени значениях одного или нескольких параметров, необходимо разделить все время облучения на несколько периодов, внутри каждого, из которых параметры считаются постоянными. Дозы за каждый период оцениваются по формуле 5, с последующим суммированием по всем периодам облучения.
- 9. При неизвестном типе соединения радионуклида в воздухе рабочей зоны или отсутствия радиоактивного равновесия для расчета доз внутреннего облучения следует принимать максимальные значения дозовых коэффициентов согласно приложения 13 к санитарным правилам.
- 10. В случае, когда работники используют средства индивидуальной защиты органов дыхания, эффективные дозы внутреннего облучения за счет ингаляционного поступления долгоживущих природных радионуклидов с производственной пылью снижаются в п раз, если среднее значение коэффициента улавливания пыли (аэрозолей) составляет [¬](отн. ед.).

3. Контроль облучения работников изотопами радона и их короткоживущими дочерними продуктами

- 11. Изотопы радона и аэрозолей короткоживущих дочерних продуктов радона (ДПР) и торона (ДПТ) вносят заметный вклад в облучение работников на рабочих местах при незначительных объемах помещений и кратности воздухообмена, хранении или переработке больших масс материалов с повышенным содержанием природных радионуклидов.
- 12. Доза внутреннего облучения за счет изотопов радона и аэрозолей ДПР и ДПТ, в воздухе, в предположении стандартного часового объема дыхания 1,2 м³/ч, определяется двумя параметрами, временем экспозиции (дыхания) t, ч, и средним за это время значением эквивалентной равновесной объемной активности (ЭРОА) изотопов радона в воздухе $\overline{C}_{\text{муи}}$, Бк/м³. Эффективная доза внутреннего облучения за счет изотопов радона определяется произведением ЭРОА изотопов радона на время, ($\overline{C}_{\text{муи}}$ t), которое обычно называют « экспозицией»
- 13. В производственных условиях экспозиции изотопами радона в 1 чБк/м 3 соответствует эффективная доза облучения, равная 0,78 10^{-5} м 3 в.

Если известно среднее значение ЭРОА изотопов радона в воздухе $\overline{C}_{\it equ}^{\Sigma}$, и время работы - t, то эффективная доза облучения рассчитывается по формуле:

$$\overline{E}^{Rn} = d \cdot \overline{C}_{equ}^{\Sigma} \cdot t, M3e,$$
 (6)

где значение дозового коэффициента d = 0,78 • 10^{-5} мЗв/(ч • Бк/м 3), а ЭРОА изотопов радона $\overline{C}_{\it equ}^{\Sigma}$ рассчитывается по формуле:

$$\overline{C}_{equ}^{\Sigma} - \overline{C}_{equ}(Rn) + 4.6 \cdot \overline{C}_{equ}(Tn), \qquad (7)$$

в которой $\overline{C}_{equ}(Rn)$ и - среднее за время t значение ЭРОА радона и торона с о о т в е т с т в е н н о .

Для работников производственных организаций при времени работы 2000 ч в год значение d = 1.56 • 10^{-2} м3в/(Бк/м 3).

14. Годовая эффективная доза производственного облучения работников (E_{np}) равна сумме доз внешнего ($E_1^{\ \ \ \ \ \ \ \ \ \ \ \ }$) и внутреннего ($E_1^{\ \ \ \ \ \ \ \ \ \ \ \ }$) облучения:

радиационной безопасности»

Значения дозовых коэффициентов при ингаляционном поступлении радионуклидов рядов ²³⁸U и ²³²Th с производственной пылью

Дозовые коэффициенты для радионуклидов ряда ²³⁸ U Таблица 1

Радионуклид	Период полураспада	Тип	Дозовый коэффициент при ингаляционном поступлении, Зв/Бк			
, , , , , , , , , , , , , , , , , , , ,		распада	Тип соединения - П	Максимальный		
1	2	3	4	5		
²³⁸ U	4,77 • 10 ⁹ лет	α	2,6 • 10 ⁻⁶	7,3 • 10 ⁻⁶		
²³⁴ Th	24,10 дней	β	6,3 • 10 ⁻⁹	7,3 • 10 ⁻⁹		
²³⁴ Pa	1,17 мин	β	3,8 • 10 ⁻¹⁰	4,0 • 10 ⁻¹⁰		
²³⁴ U	2,45 • 10 ⁵ лет	α	3,1 • 10 ⁻⁶	8,5 • 10 ⁻⁶		
²³⁰ Th	7,70 • 10 ⁴ лет	α	4,0 • 10 ⁻⁵	4,0 • 10 ⁻⁵		
²²⁶ Ra	1600 лет	α	3,2 • 10 ⁻⁶	3,2 • 10 ⁻⁶		
²²² Rn	3,824 дней	α	-	-		
²¹⁸ Po	3,10 мин	α	-	-		
²¹⁴ Pb	26,8 мин	β	-	2,9 • 10 ⁻⁹		
²¹⁴ Bi	19,9 мин	β	1,4 • 10 ⁻⁸	1,4 • 10 ⁻⁸		

²¹⁴ Po	164 мкс	α	-	-
²¹⁰ Pb	22,3 года	β	-	8,9 • 10 ⁻⁷
²¹⁰ Bi	5,013 дня	β	8,4 • 10 ⁻⁸	8,4 • 10 ⁻⁸
²¹⁰ Po	138,4 дня	α	3,0 • 10 ⁻⁶	3,0 • 10 ⁻⁶
Сумма			5,20 • 10 ⁻⁵	6,30 • 10 ⁻⁵

дозовые коэффициенты для радионуклидов ряда 232 Th Таблица 2

Радионуклид	Период	Тип распада	Дозовый коэффициент при ингаляционном поступлении, в/Бк			
	полураспада		Тип соединения - П	Максимальный		
1	2	3	4	5		
²³² Th	1,405 • 10 ¹⁰ лет	α	4,2 • 10 ⁻⁵	4,2 • 10 ⁻⁵		
²²⁸ Ra	5,75 лет	β	2,6 • 10 ⁻⁶	2,6 • 10 ⁻⁶		
²²⁸ Ac	6,15 ч	β	1,6 • 10 ⁻⁸	2,5 • 10 ⁻⁸		
²²⁸ Th	1,913 лет	α	3,1 • 10 ⁻⁵	3,9 • 10 ⁻⁵		
²²⁴ Ra	3,66 дней	α	2,9 • 10 ⁻⁶	2,9 • 10 ⁻⁶		
²²⁰ Rn	55,6 c	α	-	-		
²¹⁶ Po	0,145 c	α	-	-		
²¹² Pb	10,64 ч	β	-	1,9 • 10 ⁻⁸		
²¹² Bi	60,55 мин	α (36 %); β (64 %)	3,0 • 10 ⁻⁸	3,0 • 10 ⁻⁸		
²¹² Po	0,299 мкс	α	-	-		
²⁰⁸ Ti	3,053 мин	β	-	-		
Сумма			7,85 • 10 ⁻⁵	8,66 • 10 ⁻⁵		

Приложение 17 к санитарным правилам «Санитарно-эпидемиологические требования к обеспечению радиационной безопасности»

Журнал

производственного радиационного контроля металлолома

Наименование ор	оганизации _				
Адрес, телефон					
Φ	амилия,	имя,	отчество	И	должность,
ответственного д	лица за ради	ационны	й контроль		

Журнал	начат	«	»	 20	Γ.
Журнал	окончен	«	>>>	 20	Γ.

Количество страниц

№ π/π	Дата	Наименование металлолома, количество (кг)	Поставшик	наклалной	Приборы, применявшиеся при проведении замеров (наименование, номер)
11	2	3	4	5	6

Продолжение таблицы

Результаты радиационного контроля							
Фоновые значения	Превышение фона на поверхности	М М Э Д н а поверхности	Подпись лица, проводившего замеры				
1	2	3	4				

Приложение 18 к санитарным правилам «Санитарно-эпидемиологические требования к обеспечению радиационной безопасности»

Методика проведения производственного радиационного контроля металлолома

Условия измерений должны обеспечить обязательное обнаружение радиоактивного загрязнения металлолома при его наличии. Для этого брикетированный металлолом раскладывается слоем в один брикет. На каждой стороне брикета проводится одно измерение мощности дозы гамма-излучения и по одному измерению плотности потока альфа и бета-частиц.

Небрикетированный металлолом должен быть разложен на территории слоем не более 0,5 м. Измерения мощности гамма-излучения с помощью поискового радиометра проводится по сетке в 1 м, а в случае повышения уровня МЭД над естественным фоном, сетка измерений сгущается до обнаружения источника излучения. Измерение плотности потока альфа, бета частиц осуществляются методом непрерывного слежения по длине или ширине обследуемой партии с расстоянием между профилями слежения 0,5 м, количество замеров определяется по фиксированным точкам измерения через каждые 0,5 м.

При производственном контроле за радиоактивным загрязнением крупногабаритных механизмов, станков, транспортной, дорожной, строительной

техники и других изделий с массой более 1 тонны, измерение проводится по наружной поверхности с расстоянием между других управляемых механизмов, также внутри механизма.

При невозможности разложить металлолом слоем в 0,5 м, измерения проводятся при его выгрузке или погрузке. При этом измерение МЭД и плотности потока частиц осуществляется в каждой партии металла, поднимаемого подъемным механизмом (краном, тельфером, экскаватором и другие). Число измерений определяется числом поднятых партий металла.

При наличии в металлоломе емкостей или труб, на внутренней поверхности которых имеются солевые отложения, измерения проводятся на внутренней и наружной поверхности этих изделий.

Измерения МЭД проводятся на расстоянии 10 см от измеряемой поверхности, измерения плотности потока альфа и бета частиц на расстоянии 1 см от и з м е р я е м о й по в е р х н о с т и .

До начала производственного радиационного контроля металлолома проводится измерение ЭД естественного радиационного фона на территории, где складируется металлоломом, на расстоянии 15-20 м от контролируемого металлолома на высоте 10 см. Перед началом измерения плотности потока частиц должна быть произведена компенсация собственного фона прибора.

Оценка мощности экспозиционной дозы на территории от естественного радиационного фона осуществляется как средняя арифметическая величина из 5 и з м е р е н и й .

Оценка степени радиоактивного загрязнения металлолома осуществляется в зоне максимального показания поискового радиометра или дозиметра. Партия металлолома или часть партии (отдельные изделия) считаются радиоактивно з а г р я з н е н н ы м и , е с л и :

- 1) МЭД гамма-излучения от поверхности лома превышает 0,2 мкЗв/ч над естественным радиационным фоном местности;
- 2) плотность альфа излучения, более 0,04 беккерель на сантиметр квадратный (д а л е е $^{-}$ Б к / с м 2) ;
 - 3) плотность потока бета излучения, более 0,4 Бк/см².

© 2012. РГП на ПХВ «Институт законодательства и правовой информации Республики Казахстан» Министерства юстиции Республики Казахстан